WTF项目中的Tenet追踪功能增强:记录模糊测试器的内存写入操作
2025-07-10 09:46:23作者:曹令琨Iris
背景介绍
WTF项目是一个基于Windows的分布式代码覆盖引导的模糊测试框架,它集成了Tenet追踪功能用于记录执行轨迹。在实际使用过程中,开发者发现当前版本的Tenet追踪存在一个功能缺陷:它无法记录模糊测试器通过VirtWriteDirty方法执行的内存写入操作。
问题分析
在模糊测试过程中,测试器会通过VirtWriteDirty方法将变异后的输入数据写入目标内存区域。这些写入操作对于分析崩溃原因至关重要,特别是当这些内存区域在后续执行中没有被再次访问时。当前的Tenet追踪实现遗漏了这部分信息,导致开发者在分析崩溃原因时无法直接看到是哪些输入数据触发了问题。
解决方案实现
项目维护者0vercl0k在fbl_fix#210分支中实现了以下改进:
- 扩展了Tenet追踪功能,使其能够记录
VirtWriteDirty方法执行的内存写入操作 - 同时增加了对内存读取操作的记录,以支持Tenet的内存访问断点功能
- 确保该功能在
SetBreakpoint回调中使用VirtWriteDirty时也能正常工作
技术意义
这一改进具有重要的技术价值:
- 提高崩溃分析效率:开发者现在可以直接在Tenet追踪中看到模糊测试器写入的输入数据,无需额外工具或脚本
- 增强调试能力:结合内存读取记录,为内存访问断点提供了更完整的数据支持
- 简化工作流程:消除了开发者自行解析输出文件并手动添加内存写入记录的需求
实现细节
核心实现涉及以下技术点:
- 在
VirtWriteDirty方法执行时触发追踪记录 - 确保内存写入操作的时间戳与执行轨迹同步
- 处理在断点回调中的特殊写入场景
- 保持与现有Tenet追踪格式的兼容性
验证与测试
虽然主要开发者已进行初步测试验证了功能有效性,但仍建议用户在实际环境中进行全面验证,特别是:
- 不同大小的内存写入操作
- 高频写入场景
- 与现有追踪功能的交互
- 性能影响评估
总结
WTF项目的这一功能增强显著提升了模糊测试结果的分析效率,使开发者能够更直观地理解崩溃与输入数据之间的关系。这一改进体现了项目对用户体验的持续关注和对实用功能的不断完善,进一步巩固了WTF作为高效模糊测试框架的地位。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K