FunASR项目中长音频模型speech_seaco_paraformer_large在噪声环境下的表现分析
背景介绍
FunASR项目是阿里巴巴达摩院开源的一个语音识别框架,其中包含多种语音处理模型。在实际应用中,用户反馈其长音频识别模型speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch在特定音频文件上表现不佳,存在频繁漏识别现象。
问题现象
用户在使用该模型处理一段从MP4视频转换而来的WAV音频时,发现识别准确率明显低于预期,甚至不如Whisper模型的表现。特别值得注意的是,该音频中存在明显的背景噪声干扰。
问题分析
经过深入调查,发现问题的根源在于音频质量。原始音频包含大量背景噪声,这对语音识别模型的性能产生了显著影响。语音识别系统通常对干净的语音信号有更好的识别效果,而噪声会干扰模型对语音特征的提取和识别。
解决方案
用户尝试了以下改进方案并取得了良好效果:
-
人声分离技术:使用spleeter等音频分离工具,先提取纯净的人声部分,再进行语音识别。这种方法有效减少了背景噪声对识别过程的干扰。
-
专用VAD模型:对于含噪声的长音频,可以考虑使用speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-onnx这类内置语音活动检测(VAD)功能的模型,能够更好地处理含噪声的音频。
技术建议
对于需要在噪声环境下进行语音识别的应用场景,建议采取以下技术路线:
-
预处理阶段:在语音识别前增加音频增强和降噪环节,可以使用专业音频处理工具或深度学习模型进行预处理。
-
模型选择:根据实际应用场景选择合适的模型。对于含噪声的长音频,优先考虑带有VAD功能的模型版本。
-
参数调优:对于特定场景,可以尝试调整模型参数或进行微调,以适应特定的噪声环境。
结论
FunASR项目中的语音识别模型在纯净语音环境下表现优异,但在噪声干扰下性能可能下降。通过合理的预处理和模型选择,可以有效提升在噪声环境下的识别准确率。这一案例也提醒我们,在实际应用中,音频质量对语音识别效果有着至关重要的影响。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00