探索Iceberg:新一代大数据表格式
2024-09-19 18:47:12作者:董宙帆
项目介绍
Iceberg是一个全新的表格式,专为存储大规模、缓慢变化的数据表而设计。它旨在改进Hive、Presto和Spark等现有大数据处理引擎中的标准表布局。Iceberg的核心思想是通过跟踪表中的单个数据文件,而不是目录,来实现更高效的数据管理和查询。
Iceberg由Netflix开发,并已捐赠给Apache软件基金会,目前正处于活跃开发阶段。项目的主要目标是提供一种更高效、更可靠的表格式,以解决现有大数据表格式中的一些关键问题,如文件列表、文件重命名和元数据管理等。
项目技术分析
核心模块
Iceberg项目由多个模块组成,每个模块都有其特定的功能:
- iceberg-common: 包含其他模块使用的实用工具类。
- iceberg-api: 提供Iceberg的公共API。
- iceberg-core: 实现Iceberg API,并支持Avro数据文件,是处理引擎应依赖的核心模块。
- iceberg-parquet: 可选模块,用于处理基于Parquet文件的表。
- iceberg-orc: 可选模块,用于处理基于ORC文件的表(实验性)。
- iceberg-hive: 实现基于Hive Metastore的Iceberg表。
处理引擎支持
Iceberg还提供了对多个处理引擎的支持:
- iceberg-spark: 实现Spark的Datasource V2 API。
- iceberg-data: 用于从JVM应用程序读取Iceberg表的客户端库。
- iceberg-pig: 实现Pig的LoadFunc API。
- iceberg-presto-runtime: 生成用于Presto与Iceberg表集成的阴影运行时JAR。
兼容性
Iceberg的Spark集成支持以下版本的Spark:
| Iceberg版本 | Spark版本 |
|---|---|
| 0.2.0+ | 2.3.0 |
| 0.3.0+ | 2.3.2 |
项目及技术应用场景
Iceberg适用于需要高效管理和查询大规模数据表的场景。其设计解决了现有大数据表格式中的多个痛点,特别适合以下应用场景:
- 大规模数据仓库: 适用于需要处理PB级数据的场景,提供高效的查询和数据管理能力。
- 实时数据分析: 通过高效的文件管理和元数据跟踪,支持实时数据分析和查询。
- 数据湖: 作为数据湖的基础表格式,提供可靠的数据存储和管理能力。
项目特点
设计优势
Iceberg的设计带来了多项显著优势:
- 快照隔离: 读取器始终使用一致的表快照,无需锁定,所有表更新都是原子的。
- O(1) RPC调用: 读取快照仅需O(1)次RPC调用,大大减少了查询规划的时间。
- 分布式规划: 文件修剪和谓词下推分布到各个作业中,消除了元数据的瓶颈。
- 版本历史和回滚: 保留表快照历史,支持数据回滚,确保数据质量。
- 细粒度分区: 通过分布式规划和O(1) RPC调用,支持更细粒度的分区。
- 安全的文件级操作: 通过支持原子更改,Iceberg支持新的用例,如安全地压缩小文件和安全地追加延迟数据。
为什么需要新的表格式?
现有表格式存在多个问题:
- 缺乏规范: 不同实现处理情况不一致,如Hive和Spark的桶使用不同的哈希函数。
- 元数据仅跟踪分区: 文件在分区内的发现通过列表分区路径,导致查询规划昂贵。
- 依赖文件重命名: 大多数输出提交者依赖重命名操作来实现保证,但在S3中重命名是数据复制操作。
其他设计目标
Iceberg还改进了以下方面:
- 模式演变: 通过列ID支持添加、删除和重命名列。
- 可靠类型: 使用一组核心类型,确保跨数据格式的兼容性。
- 指标: 存储数据文件的优化指标,提高作业规划效率。
- 不可见分区: 分区作为表配置内置,无需额外分区谓词即可规划高效查询。
- 未修改的分区数据: 存储分区数据时不进行转义,保持数据原样。
- 可移植规范: 表不绑定于Java,Iceberg有清晰的规范供其他实现使用。
结语
Iceberg作为新一代大数据表格式,通过其独特的设计和强大的功能,为大规模数据管理和查询提供了全新的解决方案。无论是在数据仓库、实时数据分析还是数据湖中,Iceberg都能显著提升数据处理的效率和可靠性。如果你正在寻找一种更高效、更可靠的表格式,Iceberg无疑是一个值得尝试的选择。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868