探索Iceberg:新一代大数据表格式
2024-09-19 09:21:28作者:董宙帆
项目介绍
Iceberg是一个全新的表格式,专为存储大规模、缓慢变化的数据表而设计。它旨在改进Hive、Presto和Spark等现有大数据处理引擎中的标准表布局。Iceberg的核心思想是通过跟踪表中的单个数据文件,而不是目录,来实现更高效的数据管理和查询。
Iceberg由Netflix开发,并已捐赠给Apache软件基金会,目前正处于活跃开发阶段。项目的主要目标是提供一种更高效、更可靠的表格式,以解决现有大数据表格式中的一些关键问题,如文件列表、文件重命名和元数据管理等。
项目技术分析
核心模块
Iceberg项目由多个模块组成,每个模块都有其特定的功能:
- iceberg-common: 包含其他模块使用的实用工具类。
- iceberg-api: 提供Iceberg的公共API。
- iceberg-core: 实现Iceberg API,并支持Avro数据文件,是处理引擎应依赖的核心模块。
- iceberg-parquet: 可选模块,用于处理基于Parquet文件的表。
- iceberg-orc: 可选模块,用于处理基于ORC文件的表(实验性)。
- iceberg-hive: 实现基于Hive Metastore的Iceberg表。
处理引擎支持
Iceberg还提供了对多个处理引擎的支持:
- iceberg-spark: 实现Spark的Datasource V2 API。
- iceberg-data: 用于从JVM应用程序读取Iceberg表的客户端库。
- iceberg-pig: 实现Pig的LoadFunc API。
- iceberg-presto-runtime: 生成用于Presto与Iceberg表集成的阴影运行时JAR。
兼容性
Iceberg的Spark集成支持以下版本的Spark:
Iceberg版本 | Spark版本 |
---|---|
0.2.0+ | 2.3.0 |
0.3.0+ | 2.3.2 |
项目及技术应用场景
Iceberg适用于需要高效管理和查询大规模数据表的场景。其设计解决了现有大数据表格式中的多个痛点,特别适合以下应用场景:
- 大规模数据仓库: 适用于需要处理PB级数据的场景,提供高效的查询和数据管理能力。
- 实时数据分析: 通过高效的文件管理和元数据跟踪,支持实时数据分析和查询。
- 数据湖: 作为数据湖的基础表格式,提供可靠的数据存储和管理能力。
项目特点
设计优势
Iceberg的设计带来了多项显著优势:
- 快照隔离: 读取器始终使用一致的表快照,无需锁定,所有表更新都是原子的。
- O(1) RPC调用: 读取快照仅需O(1)次RPC调用,大大减少了查询规划的时间。
- 分布式规划: 文件修剪和谓词下推分布到各个作业中,消除了元数据的瓶颈。
- 版本历史和回滚: 保留表快照历史,支持数据回滚,确保数据质量。
- 细粒度分区: 通过分布式规划和O(1) RPC调用,支持更细粒度的分区。
- 安全的文件级操作: 通过支持原子更改,Iceberg支持新的用例,如安全地压缩小文件和安全地追加延迟数据。
为什么需要新的表格式?
现有表格式存在多个问题:
- 缺乏规范: 不同实现处理情况不一致,如Hive和Spark的桶使用不同的哈希函数。
- 元数据仅跟踪分区: 文件在分区内的发现通过列表分区路径,导致查询规划昂贵。
- 依赖文件重命名: 大多数输出提交者依赖重命名操作来实现保证,但在S3中重命名是数据复制操作。
其他设计目标
Iceberg还改进了以下方面:
- 模式演变: 通过列ID支持添加、删除和重命名列。
- 可靠类型: 使用一组核心类型,确保跨数据格式的兼容性。
- 指标: 存储数据文件的优化指标,提高作业规划效率。
- 不可见分区: 分区作为表配置内置,无需额外分区谓词即可规划高效查询。
- 未修改的分区数据: 存储分区数据时不进行转义,保持数据原样。
- 可移植规范: 表不绑定于Java,Iceberg有清晰的规范供其他实现使用。
结语
Iceberg作为新一代大数据表格式,通过其独特的设计和强大的功能,为大规模数据管理和查询提供了全新的解决方案。无论是在数据仓库、实时数据分析还是数据湖中,Iceberg都能显著提升数据处理的效率和可靠性。如果你正在寻找一种更高效、更可靠的表格式,Iceberg无疑是一个值得尝试的选择。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型014kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
sops-nix项目中用户权限配置的注意事项与解决方案 Flutter IntelliJ插件中JX Browser引擎启动失败问题解析 vite-plugin-pages 中的自定义路由数据方案探讨 ArcGIS Python API中使用FeatureClassifier进行图像分类的注意事项 OpenTelemetry Python SDK中OTLP指标导出器的User-Agent问题解析 Node-Argon2在CentOS8环境下的符号未定义问题分析与解决方案 Azure Functions Core Tools在Debian Bookworm上的兼容性问题分析 Scribe文档工具中处理PHP数组对象参数的CURL示例问题解析 AVideo项目直播流调度保存卡顿问题分析与解决 LiveContainer项目中的Acrobat应用兼容性问题分析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
289
804

React Native鸿蒙化仓库
C++
110
194

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
481
387

openGauss kernel ~ openGauss is an open source relational database management system
C++
57
139

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
576
41

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
96
250

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
355
279

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
362
37

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
688
86