poiji 的安装和配置教程
2025-05-11 00:51:18作者:瞿蔚英Wynne
1. 项目的基础介绍和主要的编程语言
poiji 是一个开源的 Java 库,用于简单、快速地将 Excel 文件转换为 Java 对象。这个库旨在简化 Java 应用程序中 Excel 文件的读取过程,无需复杂配置即可实现数据的导入。主要编程语言是 Java。
2. 项目使用的关键技术和框架
poiji 使用了 Apache POI 作为底层技术来处理 Excel 文件。Apache POI 是一个开源的 Java 库,用于处理 Microsoft Office 格式的文件,特别是 Excel 文件。poiji 通过封装 Apache POI 的功能,提供了一个更简单易用的 API,使得开发者可以更加轻松地处理 Excel 数据。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装 poiji 之前,请确保您的开发环境中已经安装了以下内容:
- Java Development Kit (JDK) 1.8 或更高版本
- Maven 3.5.4 或更高版本(用于管理和构建项目)
安装步骤
以下步骤将指导您如何通过 Maven 在您的项目中添加 poiji 依赖。
步骤 1:创建 Maven 项目
如果您还没有 Maven 项目,请先创建一个。在命令行中,进入您希望创建项目的目录,然后运行以下命令:
mvn archetype:generate -DgroupId=com.example -DartifactId=poiji-example -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
这个命令将创建一个名为 poiji-example 的 Maven 项目。
步骤 2:添加 poiji 依赖
在生成的项目目录中,打开 pom.xml 文件,然后在 <dependencies> 部分添加以下依赖项:
<dependency>
<groupId>io.poiji</groupId>
<artifactId>poiji</artifactId>
<version>1.4.0</version>
</dependency>
确保使用最新的版本号。
步骤 3:构建项目
在命令行中,进入 poiji-example 项目目录,然后运行以下命令来构建项目:
mvn clean install
这个命令将会下载 poiji 库及其所有依赖项,并构建您的项目。
步骤 4:开始使用 poiji
现在,您可以在项目中使用 poiji 库来处理 Excel 文件了。以下是一个简单的示例代码,演示了如何使用 poiji 读取 Excel 文件:
import io.poiji.Poiji;
import io.poiji.annotation.ExcelAnnotation;
import io.poiji.annotation.Excel.RowStyle;
import java.io.File;
import java.io.IOException;
import java.util.List;
@ExcelAnnotation(rowStyle = RowStyle.HEAD)
class ExcelData {
// 定义您的数据模型,对应 Excel 文件的列
}
public class PoijiExample {
public static void main(String[] args) {
try {
List<ExcelData> data = Poiji.fromExcel(new File("path/to/your/excel/file.xlsx"), ExcelData.class);
// 处理数据
} catch (IOException e) {
e.printStackTrace();
}
}
}
请根据您的实际需求,调整 ExcelData 类以匹配 Excel 文件的结构。
以上就是 poiji 的安装和配置教程,祝您使用愉快!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
183
仓颉编译器源码及 cjdb 调试工具。
C++
121
338
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.19 K