Kiali项目中Molecule测试的OLM安装重试机制优化
在Kiali项目的持续集成过程中,开发团队发现了一个影响测试稳定性的问题:当使用Molecule进行测试时,偶尔会出现无法获取或安装Operator Lifecycle Manager(OLM)的情况。这类问题通常是由于网络波动或外部服务暂时不可用导致的,而非代码本身的问题。
问题背景
Kiali作为一个服务网格的可观测性控制台,其Operator组件需要通过OLM进行生命周期管理。在CI/CD流水线中,Molecule测试框架用于验证Operator的各种行为。测试过程中需要确保OLM组件能够正确安装和运行。
开发团队观察到,测试失败往往发生在以下两个环节:
- 从GitHub获取最新OLM版本信息时失败
- 实际安装OLM组件时失败
这些失败通常是暂时性的,重试后往往能够成功。这与团队之前遇到的Ansible Galaxy错误情况类似。
解决方案
为了提高测试的健壮性,团队决定实现以下改进:
-
获取OLM版本的重试机制:当从GitHub获取最新OLM版本失败时,系统会自动进行多次重试,间隔时间逐渐增加。
-
OLM安装过程的重试机制:在安装OLM组件时,如果遇到失败,同样会触发重试逻辑。
-
合理的重试策略:采用指数退避算法,设置最大重试次数和总超时时间(约1小时),避免无限重试。
实现细节
在代码实现上,团队主要做了以下工作:
-
封装了获取OLM版本的函数,增加了重试逻辑处理。
-
在Molecule测试的preparation阶段,对OLM安装命令添加了重试包装器。
-
确保重试过程中的日志清晰可查,便于问题诊断。
-
保持与现有Ansible Galaxy错误处理机制的一致性。
技术价值
这种改进体现了几个重要的DevOps实践:
-
弹性设计:承认外部依赖可能不可靠,系统需要具备容错能力。
-
CI/CD优化:减少因环境问题导致的虚假测试失败,提高开发效率。
-
渐进式增强:在保持现有功能不变的基础上,增加系统的鲁棒性。
总结
通过在Kiali的Molecule测试中增加OLM安装的重试机制,团队显著提高了CI/CD管道的稳定性。这种处理暂时性故障的模式也可以推广到项目中的其他类似场景,体现了成熟软件工程实践的应用。
对于开发者而言,这种改进意味着更少的无关失败和更高的工作效率;对于项目整体而言,则意味着更可靠的构建过程和更高的代码质量保障。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00