MiniGemini项目中的LLM训练损失分析及优化建议
2025-06-25 18:32:18作者:裴锟轩Denise
训练损失现象观察
在MiniGemini项目中使用Qwen2 4B模型进行训练时,开发者观察到一个值得关注的现象:模型在预训练阶段的损失值稳定在1.8左右,不再继续下降。这一现象与使用LLaVA架构时的表现形成对比,后者能够达到更低的损失值(约0.8)。
损失值的正常范围分析
经过项目核心成员的验证,这种损失表现实际上是正常的。具体发现包括:
- 使用Gemma模型进行预训练时,损失值最终收敛在2.0左右
- 在指令微调阶段,损失值可以收敛到约1.0
- 其他模型如Qwen-14B在预训练阶段也表现出类似的损失范围(约1.6-2.0)
技术解读与建议
1. 损失值的评估标准
在大型语言模型训练中,损失值本身并不能完全反映模型性能。不同架构、不同规模的模型之间,损失值的绝对数值并不具备直接可比性。更重要的指标是模型在下游任务中的实际表现。
2. 可能的影响因素
- 模型架构差异:Qwen2与LLaVA采用不同的架构设计,导致损失计算方式存在差异
- 学习率设置:不恰当的学习率可能导致模型陷入局部最优
- 数据分布:预训练数据的质量和分布会影响损失收敛点
3. 优化建议
对于遇到类似问题的开发者,可以考虑以下优化方向:
- 学习率调整:尝试不同的学习率策略,如学习率热身或余弦退火
- 训练阶段监控:不仅要关注损失值,还要定期评估模型在验证集上的表现
- 架构适配:根据具体任务需求,适当调整模型架构中的关键组件
- 数据增强:确保预训练数据的多样性和质量
结论
MiniGemini项目中观察到的1.8左右的训练损失属于正常现象,开发者无需过度担忧。模型训练的成功与否应该综合考虑多个指标,而不仅仅是训练损失值。在实际应用中,建议开发者更关注模型在具体任务上的表现,并根据需求进行有针对性的优化。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193