首页
/ DrugEx v3:基于图变换和强化学习的骨架约束药物设计

DrugEx v3:基于图变换和强化学习的骨架约束药物设计

2024-05-31 18:41:50作者:姚月梅Lane

项目介绍

DrugEx v3 是一款强大的药物设计工具,它利用深度学习技术和图变换模型,针对用户提供的特定骨架进行药物分子的设计。该系统通过Transformer架构,以多头自注意力机制处理化学结构,实现了从片段到完整分子的有效生成。此外,它还采用强化学习策略,以提高所设计分子的靶点亲和力。

该项目由Xuhan Liu与Gerard J.P. van Westen共同开发,并在2022年1月发布,旨在为药物发现领域提供一种更为灵活且高效的解决方案。

项目技术分析

DrugEx v3 的核心技术在于其结合了Transformer模型和强化学习(RL)框架。Transformer模型被扩展为适应图表示的分子结构,每个原子和键都拥有新颖的位置编码,基于邻接矩阵。在RL中,该模型被训练为在给定骨架上生成分子,增强生成器以增加目标化合物的数量。同时,通过环境预测器作为RL的环境,用于提供最终奖励。

项目及技术应用场景

DrugEx v3 可广泛应用于药物研发的不同阶段。例如,在先导化合物优化时,可以使用已知活性骨架快速设计潜在的新药候选物;在药物发现早期,可用于探索具有特定药理性质或结构特征的化合物库。项目提供的实例展示了在阿片受体A2A上的应用,所有生成的分子均为有效,并显示出对A2A受体的高度亲和性。

项目特点

  • 骨架约束设计:允许用户输入特定骨架,增加了设计的针对性和灵活性。
  • Transformer模型:采用图变换模型处理复杂的化学结构,提高了分子生成的准确性和多样性。
  • 强化学习策略:训练过程中的RL策略增强了生成分子的性能,特别是针对目标受体的亲和力。
  • 多目标优化:能够集成多种评分函数,实现多目标药物设计。
  • 易于使用:提供完整的脚本集,涵盖了数据准备、模型训练和分子生成等步骤,简化了使用流程。

总体而言,DrugEx v3 是一个创新的药物设计平台,它将深度学习的强大计算能力与生物化学的知识相结合,为药物发现带来新的可能。无论你是药物研发的专业人士还是对化学感兴趣的学者,这款工具都将是你探索药物空间的重要助手。

登录后查看全文

项目优选

收起
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
532
406
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
63
145
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
120
207
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
397
37
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
297
1.03 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
251
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
358
342
CS-BooksCS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~
44
3
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
51
54