Kueue项目中Topology Aware Scheduling的配置要点与常见问题解析
在Kubernetes集群中使用Kueue进行拓扑感知调度(Topology Aware Scheduling)时,需要特别注意拓扑层级配置与节点标签的匹配关系。本文将通过一个典型问题场景,深入分析拓扑感知调度的实现原理和最佳实践。
问题现象分析
当用户尝试在Oracle Cloud环境中使用Kueue的拓扑感知调度功能时,作业始终处于挂起状态,系统报错显示"no topology domains at level: oci.oraclecloud.com/rdma.local_block_id"。检查发现节点确实具有该标签且资源充足,但调度器却无法识别拓扑域。
根本原因
经过排查发现,问题根源在于拓扑配置与节点标签的不完整匹配。在Topology资源中定义了三个层级的拓扑结构:
- oci.oraclecloud.com/rdma.hpc_island_id
- oci.oraclecloud.com/rdma.network_block_id
- oci.oraclecloud.com/rdma.local_block_id
然而实际节点仅具备后两个层级的标签,缺少最高级的hpc_island_id标签。Kueue的拓扑感知调度要求所有在Topology资源中定义的层级标签都必须存在于节点上,否则整个拓扑结构将被视为无效。
解决方案
有两种可行的解决路径:
-
补全节点标签:为所有参与调度的节点添加缺失的hpc_island_id标签,确保完整匹配Topology配置中的所有层级。
-
调整Topology配置:修改Topology资源定义,只包含节点实际具有的标签层级:
levels: - nodeLabel: "oci.oraclecloud.com/rdma.network_block_id" - nodeLabel: "oci.oraclecloud.com/rdma.local_block_id"
最佳实践建议
-
基础主机名层级:建议在拓扑配置中加入kubernetes.io/hostname作为最细粒度层级,这可以:
- 确保节点污点(Taints)被正确识别和处理
- 减少资源碎片化问题
- 提供更精确的调度粒度
-
标签验证:实施拓扑配置前,应使用kubectl检查节点标签的完整性和一致性:
kubectl get nodes --show-labels
-
渐进式配置:初次部署时,建议从简单拓扑结构开始,逐步增加复杂度,便于问题定位。
实现原理深入
Kueue的拓扑感知调度通过以下机制工作:
-
拓扑域构建:根据Topology资源定义的层级,从节点标签自底向上构建拓扑树状结构。
-
资源分配策略:调度器会尝试在满足资源需求的条件下,将Pod尽可能分配到同一拓扑域中,以减少跨节点通信开销。
-
故障隔离:高层级拓扑域通常代表故障域边界,合理的拓扑配置可以提升应用的高可用性。
典型应用场景
-
HPC工作负载:需要低延迟通信的MPI作业,应尽量调度到同一local_block中。
-
多区域部署:通过配置region/zone层级拓扑,实现跨可用区的高可用部署。
-
NUMA感知:在裸金属环境中,可配置NUMA节点层级的拓扑优化内存访问性能。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









