Kueue项目中Topology Aware Scheduling的配置要点与常见问题解析
在Kubernetes集群中使用Kueue进行拓扑感知调度(Topology Aware Scheduling)时,需要特别注意拓扑层级配置与节点标签的匹配关系。本文将通过一个典型问题场景,深入分析拓扑感知调度的实现原理和最佳实践。
问题现象分析
当用户尝试在Oracle Cloud环境中使用Kueue的拓扑感知调度功能时,作业始终处于挂起状态,系统报错显示"no topology domains at level: oci.oraclecloud.com/rdma.local_block_id"。检查发现节点确实具有该标签且资源充足,但调度器却无法识别拓扑域。
根本原因
经过排查发现,问题根源在于拓扑配置与节点标签的不完整匹配。在Topology资源中定义了三个层级的拓扑结构:
- oci.oraclecloud.com/rdma.hpc_island_id
- oci.oraclecloud.com/rdma.network_block_id
- oci.oraclecloud.com/rdma.local_block_id
然而实际节点仅具备后两个层级的标签,缺少最高级的hpc_island_id标签。Kueue的拓扑感知调度要求所有在Topology资源中定义的层级标签都必须存在于节点上,否则整个拓扑结构将被视为无效。
解决方案
有两种可行的解决路径:
-
补全节点标签:为所有参与调度的节点添加缺失的hpc_island_id标签,确保完整匹配Topology配置中的所有层级。
-
调整Topology配置:修改Topology资源定义,只包含节点实际具有的标签层级:
levels: - nodeLabel: "oci.oraclecloud.com/rdma.network_block_id" - nodeLabel: "oci.oraclecloud.com/rdma.local_block_id"
最佳实践建议
-
基础主机名层级:建议在拓扑配置中加入kubernetes.io/hostname作为最细粒度层级,这可以:
- 确保节点污点(Taints)被正确识别和处理
- 减少资源碎片化问题
- 提供更精确的调度粒度
-
标签验证:实施拓扑配置前,应使用kubectl检查节点标签的完整性和一致性:
kubectl get nodes --show-labels -
渐进式配置:初次部署时,建议从简单拓扑结构开始,逐步增加复杂度,便于问题定位。
实现原理深入
Kueue的拓扑感知调度通过以下机制工作:
-
拓扑域构建:根据Topology资源定义的层级,从节点标签自底向上构建拓扑树状结构。
-
资源分配策略:调度器会尝试在满足资源需求的条件下,将Pod尽可能分配到同一拓扑域中,以减少跨节点通信开销。
-
故障隔离:高层级拓扑域通常代表故障域边界,合理的拓扑配置可以提升应用的高可用性。
典型应用场景
-
HPC工作负载:需要低延迟通信的MPI作业,应尽量调度到同一local_block中。
-
多区域部署:通过配置region/zone层级拓扑,实现跨可用区的高可用部署。
-
NUMA感知:在裸金属环境中,可配置NUMA节点层级的拓扑优化内存访问性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00