setuptools项目中的distutils.ccompiler.compiler_class丢失问题解析
背景介绍
在Python生态系统中,setuptools是一个广泛使用的包构建和分发工具。近期,setuptools 76.0.0版本发布后,一些开发者发现他们的测试开始失败,报错显示无法从distutils.ccompiler导入compiler_class属性。这个问题主要影响了那些依赖旧版本numpy的Python项目。
问题本质
这个问题的核心在于setuptools 76.0.0版本中移除了distutils.ccompiler模块中的compiler_class属性。这个属性在旧版本的numpy(特别是1.22及更早版本)中被直接使用。当开发者使用较新版本的setuptools配合较旧版本的numpy时,就会出现兼容性问题。
技术细节
在Python的打包生态中,distutils曾经是标准库的一部分,负责处理包的构建和分发。随着Python打包生态的演进,distutils逐渐被弃用,其功能被迁移到setuptools中。在这个过程中,一些内部实现细节发生了变化。
compiler_class是distutils.ccompiler模块中的一个函数,用于根据编译器名称获取对应的编译器类。在setuptools 76.0.0版本中,这个函数被移除,导致依赖它的旧代码无法运行。
影响范围
这个问题主要影响以下场景:
- 使用Python 3.9环境的项目
- 依赖numpy 1.22或更早版本的项目
- 使用setuptools 76.0.0或更新版本的项目
特别是那些使用"最低版本"测试策略的项目更容易遇到这个问题,因为它们的测试环境会安装声明支持的最低numpy版本,但同时会获取最新版本的setuptools。
解决方案
对于遇到这个问题的开发者,有以下几种解决方案:
-
升级numpy版本:numpy在1.23版本后已经弃用了对distutils.ccompiler.compiler_class的直接依赖。
-
降级setuptools:暂时将setuptools固定在75.8.2或更早版本,等待项目依赖的其他库更新。
-
等待setuptools修复:setuptools团队已经意识到这个问题,并可能在后续版本中临时恢复这些属性以平滑过渡。
最佳实践建议
为了避免类似问题,建议开发者:
- 在项目中明确声明所有直接和间接依赖的版本范围。
- 定期更新依赖项,避免使用已弃用的API。
- 在CI/CD流水线中同时测试最低版本和最新版本的依赖组合。
- 关注依赖库的弃用警告和更新日志,及时调整代码。
未来展望
随着Python打包生态的持续演进,类似的兼容性问题可能会逐渐减少。setuptools团队已经表示会考虑在过渡期间保持更好的向后兼容性,但开发者也不应过度依赖即将被移除的功能。对于长期维护的项目,及时更新依赖和迁移到新API是最稳妥的策略。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00