mmyolo_tensorrt 项目使用教程
2024-09-17 15:10:14作者:谭伦延
1. 项目目录结构及介绍
mmyolo_tensorrt/
├── configs/
│ ├── config1.yaml
│ ├── config2.yaml
│ └── ...
├── src/
│ ├── main.py
│ ├── utils.py
│ └── ...
├── models/
│ ├── model1.py
│ ├── model2.py
│ └── ...
├── README.md
├── requirements.txt
└── ...
目录结构介绍
- configs/: 存放项目的配置文件,通常以
.yaml或.json格式存储。 - src/: 存放项目的源代码,包括主要的启动文件
main.py和一些工具函数文件utils.py。 - models/: 存放项目的模型定义文件,每个模型通常对应一个
.py文件。 - README.md: 项目的说明文档,通常包含项目的简介、安装方法、使用说明等。
- requirements.txt: 列出了项目依赖的 Python 包及其版本。
2. 项目的启动文件介绍
src/main.py
main.py 是项目的启动文件,负责初始化配置、加载模型、执行推理等核心功能。以下是 main.py 的主要功能模块:
import argparse
import yaml
from models import Model1, Model2
from utils import load_config, load_model
def main():
# 解析命令行参数
parser = argparse.ArgumentParser(description="MMYOLO TensorRT 项目启动文件")
parser.add_argument('--config', type=str, default='configs/config1.yaml', help='配置文件路径')
args = parser.parse_args()
# 加载配置文件
config = load_config(args.config)
# 加载模型
model = load_model(config['model_name'])
# 执行推理
model.inference(config['input_data'])
if __name__ == "__main__":
main()
主要功能模块
- 命令行参数解析: 使用
argparse模块解析命令行参数,允许用户指定配置文件路径。 - 配置文件加载: 使用
yaml模块加载配置文件,配置文件中包含了模型的名称、输入数据路径等信息。 - 模型加载: 根据配置文件中的
model_name加载对应的模型。 - 推理执行: 调用模型的
inference方法执行推理操作。
3. 项目的配置文件介绍
configs/config1.yaml
配置文件通常以 .yaml 格式存储,包含了项目的各种配置参数。以下是一个示例配置文件的内容:
model_name: Model1
input_data: data/input.jpg
output_dir: results/
batch_size: 1
配置文件参数介绍
- model_name: 指定要加载的模型名称,对应
models/目录下的模型文件。 - input_data: 指定输入数据的文件路径,通常是一个图像文件。
- output_dir: 指定输出结果的保存目录。
- batch_size: 指定批处理的大小,即每次推理的图像数量。
配置文件的使用
配置文件通过 main.py 中的 load_config 函数加载,并传递给模型进行初始化和推理操作。用户可以通过修改配置文件来调整模型的行为,例如更改输入数据路径、输出目录等。
总结
本教程介绍了 mmyolo_tensorrt 项目的目录结构、启动文件 main.py 以及配置文件的使用方法。通过阅读本教程,用户可以快速了解项目的结构和使用方法,并根据需要进行定制化配置。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
374
仓颉编程语言运行时与标准库。
Cangjie
130
387
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205