mmyolo_tensorrt 项目使用教程
2024-09-17 09:53:52作者:谭伦延
1. 项目目录结构及介绍
mmyolo_tensorrt/
├── configs/
│ ├── config1.yaml
│ ├── config2.yaml
│ └── ...
├── src/
│ ├── main.py
│ ├── utils.py
│ └── ...
├── models/
│ ├── model1.py
│ ├── model2.py
│ └── ...
├── README.md
├── requirements.txt
└── ...
目录结构介绍
- configs/: 存放项目的配置文件,通常以
.yaml或.json格式存储。 - src/: 存放项目的源代码,包括主要的启动文件
main.py和一些工具函数文件utils.py。 - models/: 存放项目的模型定义文件,每个模型通常对应一个
.py文件。 - README.md: 项目的说明文档,通常包含项目的简介、安装方法、使用说明等。
- requirements.txt: 列出了项目依赖的 Python 包及其版本。
2. 项目的启动文件介绍
src/main.py
main.py 是项目的启动文件,负责初始化配置、加载模型、执行推理等核心功能。以下是 main.py 的主要功能模块:
import argparse
import yaml
from models import Model1, Model2
from utils import load_config, load_model
def main():
# 解析命令行参数
parser = argparse.ArgumentParser(description="MMYOLO TensorRT 项目启动文件")
parser.add_argument('--config', type=str, default='configs/config1.yaml', help='配置文件路径')
args = parser.parse_args()
# 加载配置文件
config = load_config(args.config)
# 加载模型
model = load_model(config['model_name'])
# 执行推理
model.inference(config['input_data'])
if __name__ == "__main__":
main()
主要功能模块
- 命令行参数解析: 使用
argparse模块解析命令行参数,允许用户指定配置文件路径。 - 配置文件加载: 使用
yaml模块加载配置文件,配置文件中包含了模型的名称、输入数据路径等信息。 - 模型加载: 根据配置文件中的
model_name加载对应的模型。 - 推理执行: 调用模型的
inference方法执行推理操作。
3. 项目的配置文件介绍
configs/config1.yaml
配置文件通常以 .yaml 格式存储,包含了项目的各种配置参数。以下是一个示例配置文件的内容:
model_name: Model1
input_data: data/input.jpg
output_dir: results/
batch_size: 1
配置文件参数介绍
- model_name: 指定要加载的模型名称,对应
models/目录下的模型文件。 - input_data: 指定输入数据的文件路径,通常是一个图像文件。
- output_dir: 指定输出结果的保存目录。
- batch_size: 指定批处理的大小,即每次推理的图像数量。
配置文件的使用
配置文件通过 main.py 中的 load_config 函数加载,并传递给模型进行初始化和推理操作。用户可以通过修改配置文件来调整模型的行为,例如更改输入数据路径、输出目录等。
总结
本教程介绍了 mmyolo_tensorrt 项目的目录结构、启动文件 main.py 以及配置文件的使用方法。通过阅读本教程,用户可以快速了解项目的结构和使用方法,并根据需要进行定制化配置。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882