Hyperopt-Keras-CNN-CIFAR-100 项目启动与配置教程
2025-05-09 05:17:44作者:廉彬冶Miranda
1. 项目目录结构及介绍
项目目录结构如下:
Hyperopt-Keras-CNN-CIFAR-100/
├── cifar-100-python
│ ├── cifar-100-python.tar.gz
│ └──untar.sh
├── data
│ └── cifar-100-python
├── experiments
│ └── experiment.py
├── models
│ ├── __init__.py
│ └── keras_cnn_model.py
├── notebooks
│ └── experiment_analysis.ipynb
├── requirements.txt
├── run.py
└── train.py
目录说明:
cifar-100-python: 包含 CIFAR-100 数据集的 Python 代码和压缩文件。data: 存放 CIFAR-100 数据集的目录。experiments: 包含实验脚本和代码。models: 包含定义的 Keras 模型。notebooks: 存放 Jupyter 笔记本,用于分析和可视化实验结果。requirements.txt: 包含项目依赖的 Python 包列表。run.py: 项目的主要启动文件。train.py: 用于训练模型的脚本。
2. 项目的启动文件介绍
项目的主要启动文件是 run.py,该文件用于启动和运行实验。以下是 run.py 的主要内容:
import os
import sys
if __name__ == "__main__":
# 设置环境变量
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 导入并运行实验
from experiments.experiment import run_experiment
run_experiment()
run.py 文件设置了 CUDA 可见设备,以确保使用 GPU 进行训练,并导入 experiments 目录下的 experiment.py 文件来运行实验。
3. 项目的配置文件介绍
项目的配置文件主要集中在 experiments/experiment.py 文件中。以下是配置文件的主要部分:
import argparse
import os
def get_args():
parser = argparse.ArgumentParser(description="Hyperopt Keras CNN for CIFAR-100")
parser.add_argument('--model', type=str, default='cnn_model', help='Name of the model to train.')
parser.add_argument('--data_dir', type=str, default='data/cifar-100-python', help='Directory for storing data')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=10, help='Number of epochs to train for')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate for training')
args = parser.parse_args()
return args
def run_experiment():
args = get_args()
# 设置数据集路径
data_dir = args.data_dir
if not os.path.exists(data_dir):
os.makedirs(data_dir)
# 这里可以添加更多的配置和模型训练逻辑
# ...
# 运行实验
if __name__ == "__main__":
run_experiment()
配置文件通过 argparse 库提供了命令行参数解析,允许用户指定模型名称、数据目录、批量大小、训练轮数和学习率等参数。这些配置参数用于控制模型训练过程。在 run_experiment 函数中,可以添加更多的配置和模型训练逻辑。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19