dbt-core中快照功能hard_deletes与check策略的兼容性问题分析
2025-05-22 11:22:37作者:冯梦姬Eddie
问题背景
在数据仓库建设中,dbt-core的快照(snapshot)功能是一个非常重要的特性,它允许我们跟踪数据随时间的变化情况。在dbt-core 1.9版本中,引入了一个新特性:当配置hard_deletes='new_record'时,可以捕获被物理移除的记录。然而,当这个配置与strategy='check'一起使用时,出现了功能异常。
问题现象
具体表现为:当使用strategy='check'和hard_deletes='new_record'配置时:
- 首次运行快照会正确复制监控表中的所有记录
- 当监控表中的记录被移除后再次运行快照,会正确创建被移除记录的新条目(标记为
dbt_is_deleted='True') - 但当这些被移除的记录又被恢复时,快照表不会重新插入恢复后的记录
技术分析
快照策略的工作原理
dbt-core提供了两种主要的快照策略:
- 时间戳策略(timestamp):基于记录的最后更新时间来判断变化
- 检查策略(check):基于指定列的数值变化来判断记录是否发生变化
hard_deletes='new_record'的设计初衷是当记录被物理移除时,在快照表中保留一条标记为移除的记录,而不是完全删除它。
问题根源
通过分析源代码和用户反馈,可以确定问题主要出现在使用check策略时:
- 快照逻辑没有正确处理记录从"已移除"状态恢复的情况
- 当记录被恢复时,系统没有创建新的快照条目
- 已标记为移除的记录保持
dbt_is_deleted='True'状态,即使源记录已恢复
影响范围
这个问题会影响所有使用以下配置组合的用户:
strategy='check'hard_deletes='new_record'
解决方案建议
根据社区讨论,一个可行的修复方案是修改生成临时表的SQL逻辑,在检测移除记录时增加对dbt_is_deleted状态的检查:
where
source_data.dbt_unique_key is null
and coalesce(snapshotted_data.dbt_is_deleted, 'False') = 'False'
这个修改可以:
- 防止为已经标记为移除的记录重复创建移除条目
- 允许系统正确处理记录恢复的情况
- 保持向后兼容性(使用COALESCE处理可能为NULL的情况)
最佳实践建议
在问题修复前,建议用户:
- 如果需要跟踪记录移除和恢复,暂时使用
strategy='timestamp' - 如果必须使用check策略,可以考虑自定义快照逻辑
- 定期检查快照表中的
dbt_is_deleted标记,确保数据一致性
总结
dbt-core的快照功能是一个强大的数据历史跟踪工具,但在特定配置组合下存在功能缺陷。理解这些限制有助于我们更好地设计数据管道,并在问题修复后及时升级。对于依赖记录移除和恢复跟踪的场景,建议密切关注此问题的修复进展。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212