首页
/ 使用深度学习和TensorFlow实现的手写行文本识别

使用深度学习和TensorFlow实现的手写行文本识别

2024-05-23 22:05:31作者:齐冠琰

GitHub stars GitHub forks Maintenance Website shields.io Ask Me Anything ! License

1. 项目介绍

这个开源项目是基于深度学习的手写行文本识别系统,使用了卷积循环神经网络(Convolutional Recurrent Neural Network, CRNN),并结合了连接态时空序列损失函数(Connectionist Temporal Classification, CTC)。无需预先将图像分割为单词或字符,就能进行高效识别。深入了解该项目的工作原理,可参考作者的Medium文章

2. 技术分析

利用深度学习的原因在于其能自我提取特征,并随着数据量的增加而提高性能。该系统的实现包括以下步骤:

  1. 多尺度特征提取:通过7层的卷积神经网络。
  2. 序列标注(BLSTM-CTC):采用2层长短期记忆网络(LSTM)作为递归神经网络,与CTC一起处理时间序列操作。
  3. 转录:通过解码RNN的输出来完成最终的文本识别。

3. 应用场景

  • 历史文献数字化:自动转录手稿中的内容。
  • 教育领域:辅助评估学生的书面作业。
  • 银行业务:识别手写的签名和其他重要信息。
  • OCR增强:在现有的OCR系统中补充对手写文本的识别能力。

4. 项目特点

  • 高精度:模型训练完成后,具备8.32%的字符错误率(Character Error Rate, CER)。
  • 端到端:无需预先将文本分割为单独的字符或词。
  • 实时性:支持实时图像预处理,适应各种背景噪声。
  • 易扩展:可以添加更多的数据集进行训练以提升性能,或者集成其他解码策略。

模型架构

项目采用了CNN+BLSTM+CTC的结构,首先利用CNN提取多尺度特征,接着通过BLSTM处理时序依赖性,最后使用CTC损失函数进行训练并消除对齐问题。

要运行此项目,您需要安装Tensorflow 1.8.0、Flask、Numpy和OpenCV 3等依赖项。IAM手写数据库被用作训练数据,但您也可以自定义数据集。已提供预训练模型,只需几个命令即可进行训练、验证和预测,甚至可以通过Flask轻松部署到Web服务上。

对于想要进一步优化的开发者,项目作者提出了以下建议:

  • 使用MDLSTM进行整段文本的识别。
  • 添加行分割算法处理整篇文档。
  • 改进图像预处理方法,减少背景噪音。
  • 探索更高效的解码策略以提高准确性。

如果你在工作中使用了本项目,请引用:

@techreport{Handwritten-Line-text-recognition-using-deep-learning-2019,
  title={Handwritten Line Text Recognition},
  author={Gautam Sushant},
  institution={Tribhuvan University},
  year={2019}
}

欢迎贡献您的代码,共同完善这个项目!

这是一项由尼泊尔特里布万大学计算机工程专业学生于2019年毕业设计时完成的工作。现在,它是开放源代码社区的一个强大工具,等待着你的探索和应用。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5