推荐使用:Distributed TensorFlow on Spark —— 分布式深度学习的新纪元
2024-05-22 18:57:49作者:龚格成
在当今的机器学习领域,TensorFlow 和 Apache Spark 已经成为了两个不可或缺的工具,前者以其强大的深度学习能力而知名,后者则以其高效的大数据处理性能著称。今天,我们很高兴地向您推荐一个将两者完美结合的开源项目——Distributed TensorFlow on Spark(TensorSpark)。这个项目让大规模的深度学习变得更加简单和高效。
1、项目介绍
TensorSpark 是在 Spark 上运行分布式 TensorFlow 的框架,首次在2016年 Spark Summit East 展示,旨在提供一种在 Spark 集群上无缝扩展 TensorFlow 训练的方法。目前,项目已经优化了在 YARN 集群模式下的生产部署,特别适合在 Hortonworks HDP 2.4 环境中使用 CPU 资源的情况。
2、项目技术分析
TensorSpark 通过集成 Spark 的计算框架,实现了 TensorFlow 模型在多节点之间的并行训练。在最新版本中,它改进了测试集的读取方式,直接从 HDFS 加载,避免了本地存储需求,并且能够灵活找到 Spark 驱动所在的机器,确保在 Yarn 集群模式下稳定运行。此外,还提供了简单的 Websocket 示例,用于展示如何与参数服务器进行通信。
要运行 TensorSpark,请遵循以下步骤:
1. zip pyfiles.zip ./parameterwebsocketclient.py ./parameterservermodel.py ./mnistcnn.py ./mnistdnn.py ./moleculardnn.py ./higgsdnn.py
2. spark-submit \
--master yarn \
--deploy-mode cluster \
--queue default \
--num-executors 3 \
--driver-memory 20g \
--executor-memory 60g \
--executor-cores 8 \
--py-files ./pyfiles.zip \
./tensorspark.py
3、项目及技术应用场景
适用于任何需要在大型分布式环境中执行深度学习任务的场景,包括但不限于:
- 图像识别:如MNIST手写数字识别,利用TensorFlow的卷积神经网络模型。
- 分子结构分析:在药物研发领域,可以通过TensorSpark训练模型预测分子特性。
- 高能物理数据分析:例如在 LHC 实验中,可以用于粒子物理事件的分类。
4、项目特点
- 分布式训练: 利用 Spark 提供的分布式计算能力,可以轻松扩展到数百乃至数千个 GPU。
- 易于部署:支持 Yarn 集群模式,在 Hortonworks HDP 2.4 中得到验证。
- 资源管理:允许灵活配置 Spark Executor 的内存和核心,优化硬件资源利用率。
- 自定义模型:通过
parameterservermodel.py
提供的模板,开发者可以快速实现自己的深度学习模型。
无论是对深度学习初学者还是经验丰富的研究人员,TensorSpark 都是一个值得尝试的强大工具,它简化了大规模深度学习的实施,同时保留了 TensorFlow 的灵活性和 Spark 的易用性。立即加入,开启你的分布式深度学习之旅吧!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5