掌握高效编码新利器:torchac,PyTorch的快速算术编码库
2024-06-08 22:45:28作者:邓越浪Henry
在追求数据压缩效率与精度的道路上,我们很高兴为您介绍一个强大的开源工具——torchac。这个专门针对PyTorch设计的库,采用C++编写后端,能无缝集成到您的Python环境中,提供高速的算术编码功能。
项目简介
torchac是一个独立的算术编码器,用于将符号流编码为位流,只需输入符号的累积分布函数(CDF)。尽管其主要应用于深度学习中的神经压缩任务,但它的灵活性使其可广泛应用于任何需要高效编码的情况。值得注意的是,它并不提供概率或累积分布的学习和表示方法,这需要您自行准备。
技术解析
torchac基于这篇博客文章,实现了算术编码算法。这种编码方法通过连续的区间映射来表示符号的概率,可以达到较高的数据压缩率。由于库的底层是优化过的C++代码,它可以比纯Python实现更快速地处理复杂的位操作。
在Practical Full Resolution Learned Lossless Image Compression论文中,作者提到对于512x512图像,所有像素的编码可以在0.202秒内完成,显示了该库的高效性。
应用场景
torchac可在多个领域找到应用:
- 深度学习压缩: 在模型压缩和量化时,用于高效地编码权重或激活。
- 图像与视频压缩: 实现高性能的无损或有损压缩。
- 数据传输: 减少网络传输的数据量,提高带宽利用率。
- 数据分析: 对大量数据进行预处理以降低存储需求。
项目特点
- 简单易用的API: 提供清晰的接口,方便编码解码操作。
- 高性能: 利用C++和ninja进行即时编译,实现Python和C++的无缝集成,提升性能。
- 灵活性: 支持各种形状的输入,适应不同的数据结构。
- 自定义分布: 用户需自行提供符号的CDF,提供了更大的自由度。
要开始使用torchac,首先确保环境满足要求,如PyTorch 1.5+及Python 3.8,然后通过pip安装库。提供的MNIST自动编码器示例展示了如何在实践中应用torchac,编码和解码过程简洁明了。
总的来说,torchac是数据压缩和高效信息传输的一个强大工具,不论你是深度学习研究者还是对数据压缩感兴趣的开发者,都值得尝试使用并集成到你的项目中。现在就加入,体验高效编码的魅力吧!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
588
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
460
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454