L3C-PyTorch 开源项目使用教程
1. 项目介绍
L3C-PyTorch 是一个基于 PyTorch 实现的图像无损压缩系统,由 Fabian Mentzer、Eirikur Agustsson、Michael Tschannen、Radu Timofte 和 Luc Van Gool 在 CVPR'19 上提出。该项目的主要目标是提供一个实用的、学习型的无损图像压缩系统,旨在超越现有的工程编解码器(如 PNG、WebP 和 JPEG 2000)。
L3C-PyTorch 的核心是一个完全并行化的分层概率模型,用于自适应熵编码,该模型针对压缩任务进行了端到端的优化。与最近的自动回归离散概率模型(如 PixelCNN)相比,L3C 具有以下优势:
- 联合建模图像分布与学习的辅助表示,而不仅仅是 RGB 空间中的图像分布。
- 仅需要三个前向传递来预测所有像素概率,而不是每个像素一个。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Anaconda 或 Miniconda。然后,按照以下步骤创建并激活一个新的 conda 环境:
conda create --name l3c_env python=3.7 pip --yes
conda activate l3c_env
2.2 安装依赖
安装 PyTorch 和其他必要的依赖包:
conda install pytorch=1.1 torchvision cudatoolkit=10.0 -c pytorch
pip install -r pip_requirements.txt
2.3 编译 torchac
为了使用 L3C 进行图像压缩,你需要编译 torchac
模块。进入 src/torchac
目录并运行以下命令:
cd src/torchac
COMPILE_CUDA=auto python setup.py install
2.4 下载预训练模型
你可以从项目的 GitHub 页面 下载预训练模型。下载后,解压模型文件。
2.5 运行图像压缩
使用以下命令对图像进行压缩和解压缩:
# 压缩图像
python l3c.py /path/to/logdir 0306_0001 enc /path/to/img out.l3c
# 解压缩图像
python l3c.py /path/to/logdir 0306_0001 dec out.l3c decoded.png
3. 应用案例和最佳实践
3.1 图像压缩
L3C-PyTorch 可以用于对高分辨率图像进行无损压缩。通过使用预训练模型,用户可以快速实现图像的压缩和解压缩,而无需从头开始训练模型。
3.2 自定义数据集训练
如果你有自定义的图像数据集,可以通过以下步骤进行训练:
- 准备数据集:使用
prep_openimages.sh
脚本对数据集进行预处理。 - 修改配置文件:根据你的数据集修改
configs/ms
和configs/dl
目录下的配置文件。 - 开始训练:使用
train.py
脚本启动训练过程。
python train.py configs/ms/cr.cf configs/dl/oi.cf log_dir
3.3 模型评估
使用 test.py
脚本对训练好的模型进行评估:
python test.py /path/to/logdir 0306_0001 /some/imgdir --names "L3C" --recursive=auto
4. 典型生态项目
4.1 PyTorch
L3C-PyTorch 是基于 PyTorch 框架实现的,PyTorch 是一个开源的深度学习框架,广泛应用于计算机视觉和自然语言处理等领域。
4.2 torchac
torchac
是 L3C-PyTorch 项目中的一个重要模块,用于实现快速的熵编码。它是一个基于 C++ 的 PyTorch 扩展,提供了高效的算术编码功能。
4.3 Open Images Dataset
在 L3C-PyTorch 的训练和评估过程中,使用了 Open Images Dataset。这是一个大规模的图像数据集,包含了数百万张标注图像,适用于各种计算机视觉任务。
通过以上步骤,你可以快速上手 L3C-PyTorch 项目,并将其应用于图像无损压缩任务中。
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie058毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】。Python00
热门内容推荐
最新内容推荐
项目优选









