Aeon 项目教程
2024-09-20 22:34:50作者:彭桢灵Jeremy
项目介绍
Aeon 是一个开源的时间序列分析工具包,旨在为时间序列数据的处理、分析和预测提供一个全面的解决方案。Aeon 结合了多种时间序列分析方法,包括分类、回归、聚类和预测等,适用于各种时间序列相关的应用场景。
Aeon 项目的主要特点包括:
- 模块化设计:Aeon 提供了丰富的模块,用户可以根据需求选择合适的模块进行组合和扩展。
- 易用性:Aeon 提供了简洁的 API 和详细的文档,使得用户可以快速上手并进行时间序列分析。
- 社区支持:Aeon 是一个活跃的开源项目,拥有强大的社区支持,用户可以在社区中获取帮助和分享经验。
项目快速启动
安装 Aeon
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 Aeon:
pip install aeon
基本使用示例
以下是一个简单的示例,展示如何使用 Aeon 进行时间序列分类:
from aeon.classification.interval_based import TimeSeriesForestClassifier
from aeon.datasets import load_basic_motions
from aeon.utils.validation.series import check_series
# 加载示例数据集
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")
# 检查数据格式
X_train = check_series(X_train)
X_test = check_series(X_test)
# 初始化分类器
clf = TimeSeriesForestClassifier()
# 训练模型
clf.fit(X_train, y_train)
# 预测
y_pred = clf.predict(X_test)
# 输出预测结果
print(y_pred)
应用案例和最佳实践
时间序列分类
Aeon 提供了多种时间序列分类算法,如 TimeSeriesForest、ROCKET 等。以下是一个使用 ROCKET 进行时间序列分类的示例:
from aeon.classification.convolution_based import RocketClassifier
# 初始化 ROCKET 分类器
rocket = RocketClassifier()
# 训练模型
rocket.fit(X_train, y_train)
# 预测
y_pred = rocket.predict(X_test)
时间序列预测
Aeon 还支持时间序列预测任务。以下是一个使用 ARIMA 模型进行时间序列预测的示例:
from aeon.forecasting.arima import ARIMA
# 初始化 ARIMA 模型
arima = ARIMA()
# 训练模型
arima.fit(X_train)
# 预测
y_pred = arima.predict(fh=[1, 2, 3])
典型生态项目
1. sktime
sktime 是一个与 Aeon 类似的时间序列分析库,提供了丰富的工具和算法。Aeon 和 sktime 可以相互补充,共同构建更强大的时间序列分析解决方案。
2. tslearn
tslearn 是一个专注于时间序列数据挖掘的 Python 库,提供了多种时间序列相似性度量和聚类算法。Aeon 可以与 tslearn 结合使用,进一步提升时间序列分析的能力。
3. Prophet
Prophet 是由 Facebook 开源的时间序列预测工具,特别适用于具有季节性和趋势性的时间序列数据。Aeon 可以与 Prophet 结合使用,提供更全面的时间序列预测解决方案。
通过以上模块的介绍和示例代码,你可以快速上手并使用 Aeon 进行时间序列分析。Aeon 的强大功能和丰富的生态项目将帮助你在时间序列分析领域取得更好的成果。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44