Classiq量子计算平台0.67.0版本技术解析
量子计算编程平台Classiq近期发布了0.67.0版本,该版本在量子资源优化和经典-量子混合计算方面带来了多项重要改进。Classiq作为一个创新的量子编程平台,其核心价值在于让开发者能够以高级抽象的方式描述量子算法,同时自动处理底层量子电路的优化和编译工作。
量子资源管理优化
本次版本最显著的改进是对函数内局部变量的资源释放机制。在量子计算中,量子比特是一种宝贵且有限的资源,高效的资源管理直接影响算法的可扩展性。新版本中,当函数在Within-apply语句的compute块中被调用时,系统会自动识别并释放该函数内未使用的局部变量。
这一改进特别适用于包含经典控制的量子算法场景。Within-apply结构是量子计算中常见的模式,它允许在"compute"阶段执行量子操作,在"apply"阶段基于计算结果执行控制操作。优化后的资源管理使得这类算法的实现更加高效,减少了不必要的量子比特占用。
控制逻辑优化修复
版本0.67.0修复了多个与控制逻辑优化相关的关键问题:
-
常量等式条件控制:修复了类似
control(x == 1, ...)这样的常量等式条件在某些情况下生成错误量子电路的问题。这类条件判断在量子算法中十分常见,特别是在需要基于经典参数值进行条件量子操作时。 -
经典值原位异或操作:解决了形如
x ^= -0.5的经典值异或操作优化问题。在量子-经典混合算法中,这类操作经常用于更新经典寄存器值,修复后确保了计算结果的准确性。 -
布尔表达式原位异或:修正了包含复杂布尔表达式的异或操作(如
x ^= (y > 0) & (z > 0))的优化问题。这类表达式在算法逻辑控制中非常重要,特别是在需要基于多个条件组合更新状态时。
高精度计算支持改进
针对需要高精度计算的量子算法,本次版本修复了当机器精度设置为超过8位时,比较、减法和取负等算术表达式可能引发的内部错误。这一改进使得Classiq平台能够更好地支持以下场景:
- 高精度量子相位估计
- 需要精细参数控制的量子化学模拟
- 对数值精度敏感的优化算法
高精度支持对于金融建模、量子化学等领域的应用尤为重要,这些领域往往需要更高的计算精度来保证结果的可靠性。
技术影响与应用价值
Classiq 0.67.0版本的这些改进从多个维度提升了量子编程体验:
-
资源效率提升:自动的量子比特管理减少了手动资源分配的工作量,让开发者能够更专注于算法逻辑而非底层实现细节。
-
算法可靠性增强:控制逻辑优化的修复确保了条件量子操作的准确性,这对于构建复杂的量子控制流至关重要。
-
计算精度扩展:高精度计算支持为科学计算和金融工程等领域的量子应用打开了大门。
这些改进共同推动了Classiq平台在量子算法开发领域的实用性和可靠性,使得从研究原型到实际应用的转化更加顺畅。对于量子计算开发者而言,这意味着可以更快速、更可靠地实现复杂的量子-经典混合算法,加速量子计算在实际问题中的应用进程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00