FreeRDP网关RPC模式连接失败问题分析与修复
问题背景
FreeRDP是一款开源的远程桌面协议(RDP)客户端实现,在3.13.0版本中,用户报告了一个严重的回归性问题:当使用RPC网关模式(/gateway:type:rpc)时,连接会失败并显示"tsg_check failure"错误。这个问题影响了通过RPC网关模式连接Windows远程桌面网关(RD Gateway)的用户,特别是那些在网络负载均衡后面部署RD Gateway的场景。
问题表现
在FreeRDP 3.13.0版本中,当用户尝试通过RPC网关模式连接时,会出现以下错误序列:
- RPC PDU解析不完全警告
- RTS PDU故障状态显示ERROR_NOT_DOS_DISK
- 意外的alloc_hint值警告
- 最终tsg_check失败错误
- 连接终止,错误代码ERRCONNECT_SECURITY_NEGO_CONNECT_FAILED
相比之下,3.12.0版本在相同配置下工作正常,而将类型改为HTTP模式(/gateway:type:http)虽然可以连接,但在网络负载均衡后的RD Gateway场景下无法工作。
技术分析
问题的根源在于FreeRDP 3.13.0中对TSG(终端服务网关)检查逻辑的修改。具体来说,b138f6ca18c5这个提交引入了对TSG数据包的更严格检查,但未能正确处理某些情况下的消息包指针。
根据微软的MS-TSGU协议规范,TSG_PACKET_MSG_RESPONSE结构包含一个IsMsgPresent标志,指示messagePacket参数是否存在。当该标志为FALSE时,messagePacket参数应被忽略,但代码仍需读取指针值。3.13.0版本的实现在IsMsgPresent为FALSE时完全跳过了指针读取,导致后续数据解析错位。
解决方案
开发团队通过以下方式修复了这个问题:
- 确保即使IsMsgPresent为FALSE也读取MessageSwitchValue
- 正确读取并忽略消息包指针(MsgPtr)
- 在IsMsgPresent为FALSE时读取但不处理同意消息(consent message)
- 保持数据流解析的完整性
修复后的版本(3.13.1-dev0)已经过测试验证,能够成功建立RPC网关模式的连接。虽然仍会显示"Read NDR pointer"警告,但这些不影响功能,将在未来版本中进一步优化。
影响范围
此问题影响所有使用以下配置的用户:
- 通过RPC模式(/gateway:type:rpc)连接RD Gateway
- 特别是网络负载均衡后端的RD Gateway部署(仅RPC模式可用)
- FreeRDP 3.13.0版本
用户建议
对于遇到此问题的用户,建议:
- 升级到包含修复的FreeRDP版本(3.13.1或更高)
- 如果暂时无法升级,可回退到3.12.0版本
- 避免在生产环境中使用HTTP网关模式替代RPC模式,除非确认兼容性
技术细节补充
RPC(远程过程调用)网关模式是RD Gateway的一种连接方式,相比HTTP模式:
- 使用不同的协议栈和端口
- 支持更复杂的网络拓扑
- 在网络中间设备后表现更可靠
- 实现更高效的二进制数据传输
TSG(终端服务网关)协议是微软专为远程桌面网关设计的协议,负责:
- 身份验证和授权
- 连接隧道建立
- 策略实施
- 资源重定向控制
理解这些底层协议有助于更好地诊断和解决连接问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00