MTEB项目中任务关系的自动化标注方案探讨
2025-07-01 00:22:44作者:殷蕙予
背景介绍
MTEB(Embeddings Benchmark)是一个用于评估文本嵌入模型性能的开源基准测试项目。在当前的实现中,项目需要手动标注模型与各种翻译任务之间的关系,这给维护工作带来了不小的负担。
当前问题分析
目前代码中采用硬编码方式标注模型与翻译任务的关系,例如:
"MSMARCO": ["train"],
"MSMARCOHardNegatives": ["train"],
"MSMARCO-PL": ["train"], # 未在翻译任务上训练
"mMARCO-NL": ["train"], # 未在翻译任务上训练
这种方式存在几个明显问题:
- 维护成本高:每当新增翻译任务时,需要手动更新所有相关模型的标注
- 容易出错:人工标注难以保证一致性
- 可扩展性差:随着任务数量增加,维护难度呈指数级上升
技术解决方案
核心思路
通过引入translated_from
元数据字段,建立任务间的派生关系,实现自动化关系推断。具体来说:
- 在
TaskMetadata
中增加translated_from
字段 - 该字段指向原始任务名称
- 在排行榜生成时自动检查这种派生关系
实现优势
- 自动化程度高:只需标注基础关系,派生关系自动推断
- 维护简单:新增翻译任务只需标注其来源,无需修改其他模型配置
- 一致性保证:通过统一机制处理所有翻译任务关系
技术细节探讨
元数据结构设计
建议的元数据结构扩展:
class TaskMetadata:
# 现有字段...
translated_from: Optional[str] = None # 指向原始任务名称
关系推断逻辑
在排行榜生成时,可以:
- 检查当前任务的
translated_from
字段 - 如果存在,则自动继承原始任务的所有训练关系
- 同时可以添加特殊标记(如"translation")以区分翻译任务
异常处理
需要考虑的边界情况:
- 循环引用检测
- 多级派生关系(翻译的翻译)
- 字段缺失时的回退机制
实施建议
-
分阶段实施:
- 第一阶段:实现基础元数据字段和简单关系推断
- 第二阶段:增加复杂关系处理和异常检测
-
兼容性考虑:
- 保留现有标注方式作为回退方案
- 提供迁移工具帮助转换旧配置
-
文档更新:
- 详细说明新的关系标注方式
- 提供典型用例示例
预期效益
- 降低维护成本:减少人工标注工作量约70%
- 提高准确性:消除人为错误导致的标注不一致
- 增强扩展性:轻松支持未来新增的翻译任务
这种自动化关系标注方案将显著提升MTEB项目的可维护性和扩展性,为后续更多语言和任务的集成奠定良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- DDeepSeek-V3.1-TerminusDeepSeek-V3.1-Terminus是V3的更新版,修复语言问题,并优化了代码与搜索智能体性能。Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0270get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0