SqueezeSegV2 项目使用教程
2024-09-17 21:24:11作者:蔡丛锟
1. 项目介绍
SqueezeSegV2 是一个用于 LiDAR 点云分割的改进型卷积神经网络模型。该项目在 SqueezeSeg 的基础上进行了优化,提升了模型对 LiDAR 点云中 dropout 噪声的鲁棒性。通过改进的模型结构、训练损失、批量归一化以及额外的输入通道,SqueezeSegV2 在真实数据训练中显著提高了分割精度。此外,项目还引入了无监督域适应训练管道,解决了模型在合成数据训练后难以泛化到真实世界的问题。
2. 项目快速启动
2.1 环境准备
确保你的系统满足以下要求:
- Ubuntu 16.04
- Python 2.7
- TensorFlow 1.4(支持 GPU)
2.2 安装步骤
-
克隆项目仓库
git clone https://github.com/xuanyuzhou98/SqueezeSegV2.git cd SqueezeSegV2 -
设置虚拟环境
virtualenv env source env/bin/activate -
安装依赖包
pip install -r requirements.txt
2.3 运行示例
执行以下命令运行示例脚本:
cd $SQSG_ROOT/
python ./src/demo.py
如果安装正确,检测器会将检测结果以及 2D 标签图写入 $SQSG_ROOT/data/samples_out 目录。
3. 应用案例和最佳实践
3.1 应用案例
SqueezeSegV2 主要应用于自动驾驶领域,用于道路对象的分割。例如,在自动驾驶车辆的 LiDAR 传感器数据处理中,SqueezeSegV2 可以有效地分割出道路、车辆、行人等对象,为后续的路径规划和决策提供支持。
3.2 最佳实践
- 数据准备:使用 KITTI 数据集进行训练和评估。可以通过提供的链接下载转换后的数据集。
- 模型训练:使用提供的训练脚本进行模型训练,并使用 TensorBoard 监控训练过程。
- 域适应:利用无监督域适应技术,提升模型在合成数据上的泛化能力。
4. 典型生态项目
- KITTI 数据集:用于训练和评估 SqueezeSegV2 模型的标准数据集。
- TensorFlow:SqueezeSegV2 的深度学习框架,支持 GPU 加速。
- PandaSet:由 Hesai 和 Scale 提供的 LiDAR 数据集,包含 4800 个点云扫描,适用于自动驾驶场景。
通过以上步骤,你可以快速上手 SqueezeSegV2 项目,并在自动驾驶等领域中应用该模型进行 LiDAR 点云分割。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178