探索社交网络的奥秘:Graph Convolutional Neural Networks 教程
2024-05-21 03:23:50作者:丁柯新Fawn
项目介绍
欢迎来到一个深入浅出的 Graph Convolutional Neural Networks(GCNs)教程!这个开源项目不仅提供了对 Zachary 的空手道俱乐部数据集的深入理解,还通过实际代码让你亲身体验 GCNs 在无监督和半监督学习中的应用。该项目旨在帮助你掌握如何在图结构上实现深度学习,并解决复杂的社会网络问题。
项目技术分析
在这个项目中,关键的亮点是 TensorFlow 实现的 Graph Convolutional 层,它位于 layers/graph.py 文件中。GCNs 是一种新颖的神经网络架构,能够处理非欧几里得数据,如图,其核心在于利用图拉普拉斯矩阵进行局部滤波。此外,utils/sparse.py 中的辅助函数帮助处理稀疏矩阵,这是处理大规模图数据的关键。
项目依赖于 Anaconda 虚拟环境,并提供了一个 environment.yml 文件以简化环境配置。你可以轻松创建名为 env_graph_convnet 的虚拟环境,并选择是否使用 GPU 版本的 TensorFlow。
项目及技术应用场景
GCNs 的强大之处在于它们能应用于各种复杂的社交网络分析任务,例如:
- 社区检测 - 通过分析成员之间的互动模式,可以预测并划分社交网络中的不同群体,如同此项目中对 Zachary 的空手道俱乐部的分组。
- 关系预测 - 在人际网络中,GCNs 可以预测两个节点间是否存在未被观察到的关系。
- 节点分类 - 对于半监督学习,GCNs 可以基于已知标签的部分节点,为整个图的其余部分分配标签。
这个项目提供的示例脚本展示了如何在上述场景中使用 GCNs。
项目特点
- 易用性 - 提供了详细的指导文档,包括数据预处理和模型训练,使得初学者也能快速上手。
- 灵活性 - 基于 TensorFlow 实现,支持 CPU 和 GPU 运行,可以适应不同的硬件环境。
- 全面性 - 除了基本的 GCN 实现外,还引用了多个相关研究论文,便于深入了解这一领域的最新进展。
- 可扩展性 - 此代码库设计得足够通用,可以方便地应用到其他图数据集和图相关任务上。
如果你对社交网络分析或图神经网络有兴趣,那么这个项目绝对值得一试。立即参与进来,探索隐藏在复杂人际关系网下的秘密吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19