DBoW2 开源项目教程
2024-10-10 06:03:25作者:彭桢灵Jeremy
1. 项目介绍
DBoW2 是一个增强型的分层词袋库,专为 C++ 设计。它实现了在图像特征空间中近似最近邻的分层树结构,并创建了一个视觉词汇表。DBoW2 还实现了一个图像数据库,使用倒排文件和直接文件来索引图像,从而实现快速查询和特征比较。
主要特点
- 模板化类:DBoW2 的类是模板化的,因此可以与任何类型的描述符一起工作。
- 支持 ORB 和 BRIEF 描述符:DBoW2 自带了直接处理 ORB 或 BRIEF 描述符的类。
- 快速特征比较:通过添加直接文件到图像数据库,DBoW2 实现了快速特征比较。
- 兼容性:使用 OpenCV 存储系统保存词汇表和数据库,支持 YAML 格式和压缩格式(.gz)。
2. 项目快速启动
环境准备
确保你已经安装了以下依赖:
- OpenCV
- Boost::dynamic_bitset
安装 DBoW2
git clone https://github.com/dorian3d/DBoW2.git
cd DBoW2
mkdir build
cd build
cmake ..
make
sudo make install
示例代码
以下是一个简单的示例代码,展示了如何使用 DBoW2 创建一个词汇表并将其保存到文件中。
#include <DBoW2/DBoW2.h>
#include <opencv2/opencv.hpp>
int main() {
// 创建一个 ORB 词汇表
DBoW2::TemplatedVocabulary<DBoW2::FORB::TDescriptor, DBoW2::FORB> voc(10, 6);
// 加载图像并提取 ORB 特征
cv::Mat image = cv::imread("path_to_image.jpg", cv::IMREAD_GRAYSCALE);
std::vector<cv::Mat> descriptors;
cv::Ptr<cv::ORB> orb = cv::ORB::create();
orb->detectAndCompute(image, cv::Mat(), cv::noArray(), descriptors);
// 添加描述符到词汇表
voc.create(descriptors);
// 保存词汇表到文件
voc.save("vocabulary.yml.gz");
return 0;
}
3. 应用案例和最佳实践
应用案例
DBoW2 广泛应用于计算机视觉领域,特别是在图像检索和视觉SLAM(同步定位与地图构建)中。例如,它可以用于创建一个图像数据库,通过比较图像的视觉词汇来快速检索相似图像。
最佳实践
- 词汇表大小:选择合适的词汇表大小和深度,以平衡计算效率和准确性。
- 特征提取:使用高效的特征提取算法(如 ORB 或 BRIEF)来提高性能。
- 数据库管理:定期更新和优化数据库,以确保查询效率。
4. 典型生态项目
DLoopDetector
DLoopDetector 是与 DBoW2 配合使用的项目,用于检测视觉SLAM中的回环(loop closure)。它利用 DBoW2 的快速特征比较能力,来识别图像序列中的重复场景。
ORB-SLAM2
ORB-SLAM2 是一个基于 ORB 特征的视觉SLAM系统,它集成了 DBoW2 来处理图像的视觉词汇,从而提高定位和地图构建的精度。
通过以上模块的介绍,你应该能够快速上手并深入理解 DBoW2 的使用和应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.22 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258