首页
/ FederatedAI/FATE项目中min-max标准化公式的修正与解析

FederatedAI/FATE项目中min-max标准化公式的修正与解析

2025-06-05 14:26:28作者:翟江哲Frasier

在联邦学习框架FederatedAI/FATE的最新版本更新中,开发团队修正了一个关于min-max标准化(min-max scaling)的重要公式错误。这个修正对于确保数据预处理阶段的准确性具有重要意义。

min-max标准化原理

min-max标准化是一种常见的数据预处理技术,它将原始数据线性地变换到一个指定的范围(通常是[0,1]或[-1,1])。其基本公式为:

X_std = (X - X.min) / (X.max - X.min)
X_scaled = X_std * (max - min) + min

其中:

  • X是原始数据
  • X.min和X.max分别是原始数据的最小值和最大值
  • min和max是目标范围的最小值和最大值

原实现中的问题

在FATE框架的原实现中,开发人员发现了一个公式计算顺序的问题。原代码中的实现为:

data_scaled = test_data_select * self._scale - (self._scale_min + self._range_min)

这个公式的问题在于括号的使用导致了计算顺序的错误。根据min-max标准化的数学原理,应该先进行乘法运算,然后再进行减法运算,而不应该将两个最小值相加后再进行减法。

修正后的实现

经过修正后的公式去除了不必要的括号:

data_scaled = test_data_select * self._scale - self._scale_min - self._range_min

这一修正确保了数学计算的正确性,使得标准化后的数据能够准确地落在预期的范围内。

影响分析

这个修正虽然看似简单,但对于联邦学习中的数据对齐和特征工程至关重要。在联邦学习场景下,各参与方的数据需要经过一致的预处理才能保证模型的训练效果。错误的标准化处理可能导致:

  1. 数据范围不一致,影响模型收敛
  2. 不同参与方之间的特征尺度不匹配
  3. 模型权重初始化受到影响

标准化在联邦学习中的重要性

在联邦学习框架中,min-max标准化尤为重要,因为:

  1. 各参与方的数据分布可能差异很大,标准化可以统一特征尺度
  2. 保护数据隐私的同时,确保数值特征的可比性
  3. 为后续的联邦特征工程提供一致的基础

这个修正已在FATE 2.1版本中发布,确保了框架中数据预处理环节的准确性。对于使用FATE框架的研究人员和开发者来说,这一修正将帮助他们获得更可靠的联邦学习结果。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0