PostgreSQL 17监控问题:postgres_exporter中checkpoints_timed列缺失的解决方案
背景介绍
PostgreSQL 17 beta3版本对监控统计信息视图进行了重要调整,将检查点相关的统计信息从传统的pg_stat_bgwriter视图迁移到了新增的pg_stat_checkpointer视图中。这一变更导致广泛使用的postgres_exporter监控工具在收集指标时出现错误,提示"checkpoints_timed列不存在"。
问题分析
在PostgreSQL 17之前的版本中,检查点相关的统计指标(如checkpoints_timed、checkpoints_req等)都存储在pg_stat_bgwriter系统视图中。然而从PostgreSQL 17开始,这些指标被转移到了专门的新视图pg_stat_checkpointer中,这是PostgreSQL开发团队对监控统计信息架构的一次优化调整。
当用户升级到PostgreSQL 17后,使用postgres_exporter(特别是v0.15.0版本)进行监控时,会出现以下错误日志:
caller=collector.go:202 level=error msg="collector failed" name=stat_bgwriter duration_seconds=0.018634044 err="pq: column \"checkpoints_timed\" does not exist"
临时解决方案
对于需要立即解决问题的用户,目前有以下几种临时解决方案:
-
禁用stat_bgwriter收集器
在启动postgres_exporter时添加--no-collector.stat_bgwriter参数,或者在Docker环境中通过command参数指定:command: '--no-collector.stat_bgwriter'在Helm chart中可以通过配置实现:
prometheus-postgres-exporter: config: disableCollectorBgwriter: true -
使用SQL Exporter替代
可以配置SQL Exporter来执行自定义查询,只获取pg_stat_bgwriter视图中仍然可用的指标(如buffers_clean、maxwritten_clean等)。
长期解决方案
社区已经意识到这个问题,并提出了修复方案。预计在未来的postgres_exporter版本中,将会:
- 检测PostgreSQL版本,对17及以上版本使用新的pg_stat_checkpointer视图
- 保持向后兼容,对旧版本继续使用pg_stat_bgwriter视图
- 可能需要调整指标命名以反映数据来源的变化
最佳实践建议
对于计划升级到PostgreSQL 17的用户,建议:
- 在测试环境中先验证监控系统的兼容性
- 关注postgres_exporter的更新,及时升级到包含修复的版本
- 考虑扩展监控方案,除了检查点指标外,还应关注PostgreSQL 17引入的其他新特性和性能指标
总结
PostgreSQL 17对监控统计视图的调整是数据库演进过程中的一部分,虽然短期内会造成一些兼容性问题,但从长期来看,这种分离使得监控数据更加清晰和有组织。作为DBA或运维人员,理解这些变化并及时调整监控策略,是确保数据库健康运行的重要一环。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00