Apache Kvrocks对RediSearch的支持:构建Redis兼容的二级索引与全文搜索能力
Apache Kvrocks作为一款兼容Redis协议的键值存储数据库,近期正在积极引入对RediSearch模块的支持。这一重要特性将为Kvrocks带来强大的查询、二级索引和全文搜索能力,使其在功能上更接近传统关系型数据库,同时为未来的向量搜索功能奠定基础。
RediSearch的核心价值
RediSearch作为Redis的扩展模块,为原生Redis提供了超越简单键值存储的高级查询能力。它允许用户基于文档中的字段建立索引,并支持复杂的查询语法,包括布尔逻辑、模糊匹配和范围查询等。这种能力对于需要高效数据检索的场景至关重要。
Kvrocks实现RediSearch的技术挑战
在Kvrocks中实现RediSearch支持涉及多个技术层面的挑战:
-
索引编码设计:需要为不同类型的索引(如标签、数值等)设计高效的存储编码方案,确保索引数据既能快速访问又节省存储空间。
-
索引构建与维护:系统需要实时监控键的变化,自动维护索引的一致性,这对Kvrocks的底层存储引擎提出了新的要求。
-
查询处理架构:完整的查询处理流程包括语法解析、查询计划生成、优化和执行等多个环节,需要构建一个高效的查询执行引擎。
-
多索引类型支持:除了基本类型,还需要考虑未来对向量、文本和地理空间等高级索引类型的扩展支持。
实现路径与关键技术
Kvrocks团队采用了分阶段实施的策略:
-
基础架构搭建:首先构建了索引管理的基础框架,包括索引的创建、更新和删除机制。
-
查询处理引擎:实现了从Redis查询语法到内部表示(IR)的转换,设计了查询优化器和执行器。
-
命令兼容层:确保与Redis的RediSearch命令完全兼容,用户无需修改现有应用即可迁移。
-
性能优化:针对Kvrocks的存储特点,对索引访问路径进行了专门优化,减少IO开销。
应用场景与未来展望
RediSearch的支持为Kvrocks开辟了新的应用场景:
- 电商平台:实现商品的多维度筛选和全文搜索
- 内容管理系统:支持文章内容的快速检索
- 日志分析:高效查询结构化日志数据
未来,基于RediSearch的基础设施,Kvrocks计划进一步实现向量搜索功能,这将使其在AI和机器学习应用场景中更具竞争力。同时,团队也在探索SQL-like查询接口的支持,以降低传统数据库用户的使用门槛。
Kvrocks对RediSearch的实现不仅增强了其作为Redis替代方案的竞争力,也为需要复杂查询能力的应用提供了新的选择,体现了开源社区对现代数据存储需求的快速响应能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00