在Prompt-Optimizer项目中调用本地Ollama部署模型的方法
在Prompt-Optimizer项目中,开发者可能会遇到调用本地部署的Ollama模型时出现连接失败的问题。本文将深入分析这一问题的原因,并提供完整的解决方案。
问题现象分析
当尝试通过类似http://192.168.0.10:11434的地址调用本地Ollama部署的模型时,系统会返回"连接测试失败: API错误: 连接测试失败: Connection error"的错误提示。然而,使用LangChain框架却可以成功调用同一模型,这表明问题并非出在模型服务本身,而是与调用方式或配置有关。
根本原因
经过技术分析,这一问题主要由Ollama服务的默认跨域限制(CORS)引起。Ollama服务默认设置了严格的安全策略,限制了来自不同源的请求,这是现代Web应用常见的安全措施。
解决方案
要解决这一问题,需要通过设置环境变量来调整Ollama的默认行为。具体需要配置以下两个关键环境变量:
-
OLLAMA_ORIGINS:将其值设置为"*",表示允许所有来源的跨域请求。这一设置会放宽Ollama的跨域限制,使任何来源的请求都能访问API。
-
OLLAMA_HOST:将其值设置为"0.0.0.0:11434",这一配置确保Ollama服务监听所有网络接口,而不仅仅是本地回环地址。这对于需要从局域网内其他设备访问服务的情况尤为重要。
实施步骤
-
在启动Ollama服务前,设置环境变量:
export OLLAMA_ORIGINS="*" export OLLAMA_HOST="0.0.0.0:11434" -
启动Ollama服务:
ollama serve -
在Prompt-Optimizer项目中重新测试连接,此时应该能够成功调用本地部署的模型。
安全注意事项
虽然将OLLAMA_ORIGINS设置为"*"可以解决问题,但在生产环境中这可能带来安全风险。建议开发者根据实际需求,设置更精确的允许来源列表,而不是完全开放跨域访问。例如,可以设置为特定的域名或IP地址范围。
总结
通过合理配置Ollama的环境变量,可以轻松解决Prompt-Optimizer项目调用本地模型时的连接问题。这一解决方案不仅适用于Prompt-Optimizer项目,对于其他需要集成Ollama服务的应用同样有效。开发者在实施时应当权衡便利性与安全性,根据实际场景选择最合适的配置方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00