首页
/ 在Prompt-Optimizer项目中调用本地Ollama部署模型的方法

在Prompt-Optimizer项目中调用本地Ollama部署模型的方法

2025-06-14 14:18:17作者:凤尚柏Louis

在Prompt-Optimizer项目中,开发者可能会遇到调用本地部署的Ollama模型时出现连接失败的问题。本文将深入分析这一问题的原因,并提供完整的解决方案。

问题现象分析

当尝试通过类似http://192.168.0.10:11434的地址调用本地Ollama部署的模型时,系统会返回"连接测试失败: API错误: 连接测试失败: Connection error"的错误提示。然而,使用LangChain框架却可以成功调用同一模型,这表明问题并非出在模型服务本身,而是与调用方式或配置有关。

根本原因

经过技术分析,这一问题主要由Ollama服务的默认跨域限制(CORS)引起。Ollama服务默认设置了严格的安全策略,限制了来自不同源的请求,这是现代Web应用常见的安全措施。

解决方案

要解决这一问题,需要通过设置环境变量来调整Ollama的默认行为。具体需要配置以下两个关键环境变量:

  1. OLLAMA_ORIGINS:将其值设置为"*",表示允许所有来源的跨域请求。这一设置会放宽Ollama的跨域限制,使任何来源的请求都能访问API。

  2. OLLAMA_HOST:将其值设置为"0.0.0.0:11434",这一配置确保Ollama服务监听所有网络接口,而不仅仅是本地回环地址。这对于需要从局域网内其他设备访问服务的情况尤为重要。

实施步骤

  1. 在启动Ollama服务前,设置环境变量:

    export OLLAMA_ORIGINS="*"
    export OLLAMA_HOST="0.0.0.0:11434"
    
  2. 启动Ollama服务:

    ollama serve
    
  3. 在Prompt-Optimizer项目中重新测试连接,此时应该能够成功调用本地部署的模型。

安全注意事项

虽然将OLLAMA_ORIGINS设置为"*"可以解决问题,但在生产环境中这可能带来安全风险。建议开发者根据实际需求,设置更精确的允许来源列表,而不是完全开放跨域访问。例如,可以设置为特定的域名或IP地址范围。

总结

通过合理配置Ollama的环境变量,可以轻松解决Prompt-Optimizer项目调用本地模型时的连接问题。这一解决方案不仅适用于Prompt-Optimizer项目,对于其他需要集成Ollama服务的应用同样有效。开发者在实施时应当权衡便利性与安全性,根据实际场景选择最合适的配置方案。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8