LangFlow项目中使用本地Ollama LLM的Monkey Patch实现技巧
2025-04-30 18:40:59作者:明树来
在LangFlow项目中集成本地大型语言模型(Local LLM)时,开发者常常会遇到与框架默认API不兼容的问题。本文将详细介绍一种通过Monkey Patch技术实现LangFlow与本地Ollama LLM无缝对接的解决方案。
背景与挑战
LangFlow作为一个基于Python的AI工作流框架,默认设计为与OpenAI等云服务API对接。但在实际应用中,许多开发者出于隐私、成本或网络限制等因素,更倾向于使用本地部署的LLM模型,如Ollama。然而,直接替换会遇到接口不匹配的问题。
核心解决方案
Monkey Patch技术原理
Monkey Patch是一种运行时动态修改代码的技术,允许在不改变原始代码结构的情况下,替换或扩展某些功能。在本方案中,我们通过重写litellm.completion方法,将其指向本地Ollama查询函数。
实现细节
def custom_completion(*args, **kwargs):
messages = kwargs.get("messages", [])
prompt = messages[0].get("content", "") if messages else ""
response_text = query_ollama(prompt)
return SimpleNamespace(choices=[SimpleNamespace(message=SimpleNamespace(content=response_text))])
litellm.completion = custom_completion
这段代码完成了以下关键操作:
- 从传入参数中提取prompt内容
- 调用本地query_ollama函数获取响应
- 构造与LangFlow预期格式匹配的返回对象
OllamaLLM适配器类
为了保持与CrewAI框架的兼容性,我们创建了一个专门的适配器类:
class OllamaLLM(LLM):
def __init__(self, use_gpu=True):
super().__init__(model=OLLAMA_MODEL)
self.use_gpu = use_gpu
def complete(self, prompt):
return litellm.completion(model=OLLAMA_MODEL, messages=[{"role": "user", "content": prompt}])
这个类继承自LLM基类,提供了标准的complete接口,内部则通过我们修改过的litellm.completion方法实现功能。
技术优势
- 无缝集成:无需修改LangFlow核心代码即可实现本地LLM支持
- 灵活性:可以轻松切换不同的本地模型或配置
- 性能优化:通过use_gpu参数控制是否使用GPU加速
- 格式兼容:返回数据结构与原始API保持一致,确保上层功能不受影响
应用场景
这种技术特别适用于:
- 需要完全离线运行的AI应用
- 对数据隐私要求严格的场景
- 希望减少API调用成本的开发项目
- 在受限网络环境中部署AI解决方案
实现建议
- 确保query_ollama函数已正确实现并能与本地Ollama服务通信
- 根据实际模型性能调整prompt处理逻辑
- 考虑添加错误处理和重试机制增强稳定性
- 对于生产环境,建议添加日志记录以方便调试
通过这种Monkey Patch技术,开发者可以灵活地在LangFlow项目中集成本地LLM,同时保持框架的完整功能和扩展性。这种方案不仅适用于Ollama,也可以推广到其他本地部署的AI模型集成场景。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0108AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399