首页
/ 深度会话兴趣网络(DSIN)使用指南

深度会话兴趣网络(DSIN)使用指南

2024-08-15 00:11:18作者:蔡丛锟

项目介绍

深度会话兴趣网络(Deep Session Interest Network,简称DSIN)是针对点击率预测(CTR Prediction)设计的一种模型,该模型由阿里巴巴团队提出并开源。DSIN首次发布于IJCAI 2019,它通过将用户的在线行为分割成多个session,并对每个session内部的兴趣进行提取与交互,进而捕捉用户兴趣的动态演化过程。此模型特别适用于推荐系统,通过深化对用户瞬时及长期兴趣的理解,提升了预测准确性。

项目快速启动

安装依赖

首先确保你的环境中安装了Python 3.x版本以及必要的库,包括TensorFlow等。你可以通过以下命令安装所需的依赖:

pip install -r requirements.txt

数据准备

DSIN需要特定格式的行为日志作为输入。通常你需要自己准备或者转换数据,使之符合项目的数据输入规范。官方可能提供了样本数据或数据处理脚本,具体查看仓库的data_processing或相应说明文件。

运行示例

以下是一个简化的启动命令示例,实际使用时需根据项目结构和具体配置调整:

python main.py --config_path path_to_your_config_file

其中path_to_your_config_file应该替换为你的配置文件路径,配置文件中定义了模型训练的具体参数,包括数据路径、模型参数、训练轮次等。

应用案例和最佳实践

在推荐系统的开发中,DSIN可以被集成到商品推荐、新闻推送等多个场景中。最佳实践中,建议遵循以下步骤:

  1. 数据准备:精确分割用户的会话,确保每个会话内的行为连贯,而会话间行为差异明显。
  2. 模型调参:根据应用的具体情况调整模型超参数,比如Session Interest Extractor中的Transformer层数、LSTM隐藏单元数等。
  3. 评估与优化:使用A/B测试评估模型效果,重点关注点击率、转化率等关键指标,并根据反馈循环优化模型。
  4. 在线融合:将DSIN模型预测结果与其他推荐策略结合,采用混合策略提高用户体验。

典型生态项目

虽然本指引专注于DSIN本身,但在实际应用中,DSIN经常与其他技术栈结合,例如结合Spark或Flink处理大规模数据流,或者与MLOps工具(如Airflow、MLflow)集成,以实现模型自动化训练与部署。此外,对于复杂推荐系统,DSIN可能会与其他模型(如DIN、DIEN或更现代的方法)共同构建多层次兴趣表示,形成更强大的推荐引擎。


请注意,上述指令是基于通用开源项目文档编写的指导思路,并非针对特定版本的DSIN仓库进行的详细说明。具体实施时,请参考仓库最新的README文件或官方文档以获得最准确的操作步骤。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1