GRU4Rec:基于GRU的会话推荐系统实现指南
2024-10-09 06:57:20作者:翟江哲Frasier
项目介绍
GRU4Rec 是一个基于 Theano 实现的会话推荐系统算法,源自于 2016 年 ICLR 发表的论文《基于循环神经网络的会话式推荐》以及后续的《面向会话推荐的带有Top-k增益的循环神经网络》。此项目特别优化以在 NVIDIA GPU(如 GTX 1080Ti)上运行,实现了高效率,训练速度可达到每秒约1500个迷你批次。它不支持CPU执行,但通过修改代码可以使其适应。重要的是,使用本项目或者其衍生作品进行商业部署需获取授权。
快速启动
环境准备
确保您的开发环境已安装以下软件:
- Python 3.6.3 或更高版本。
- NumPy 1.16.4 及以上。
- Pandas 0.24.2 或更新。
- CUDA 最新版,至少兼容9.2,推荐测试过最新版,例如11.8。
- libgpuarray 最新版本。
- Theano 1.0.5 或更新版本,并配置好GPU支持。
- (可选)Optuna 用于超参数优化,推荐版本3.0.3。
- 注意避开cuDNN版本的问题,推荐使用8.2.1,且配置Theano避免使用存在bug的cuDNN操作。
安装与运行
首先,克隆项目到本地:
git clone https://github.com/hidasib/GRU4Rec.git
cd GRU4Rec
调整配置文件或设置THEANO_FLAGS来确保使用GPU:
# 设置THEANO_FLAGS,如果需要特定GPU,例如cuda1
export THEANO_FLAGS='device=cuda0,floatX=float32,optimize="fast_run",optimizer_excluding="local_dnn_reduction:local_cudnn_maxandargmax:local_cudnn_argmax"'
接着,训练模型示例:
python run.py -ps "layers=100/50 epochs=10 batch_size=64"
这里,-ps 参数用于提供参数字符串,其中定义了模型的结构和训练过程的一些关键设置。
应用案例和最佳实践
GRU4Rec适用于个性化会话推荐场景,比如电商网站的“接下来可能感兴趣的商品”推荐。为了获得最佳效果,应该仔细选择序列长度、损失函数(如BPR)、隐藏层大小等参数,并根据实际数据调整。
最佳实践提示:
- 利用日志或点击流数据构建训练集,确保每个会话是连续的交互序列。
- 进行A/B测试,比较GRU4Rec与其他推荐算法的表现。
- 使用Optuna等工具自动调优超参数以找到最优配置。
典型生态项目
虽然GRU4Rec本身专注于Theano实现,社区中也存在该模型的PyTorch和TensorFlow版本,这些实现适应了现代深度学习框架的特点。对于开发者来说,可以根据偏好和生态系统的选择采用这些替代版本,尤其是在考虑长期维护和性能优化时。
请注意,尽管存在多种实现方式,应优先考虑官方或验证过的版本,避免使用可能导致准确性显著下降或培训时间过长的非官方实现。
通过遵循上述指南,您可以快速地开始使用GRU4Rec为您的应用程序构建高效、个性化的会话推荐系统。务必关注项目文档和最新更新,以便充分利用其全部功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.69 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
656
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
657