KeyBERT项目:如何获取关键词的嵌入向量
理解KeyBERT中的嵌入机制
KeyBERT是一个基于BERT模型的关键词提取工具,它通过计算文档和单词的嵌入向量来识别最具代表性的关键词。在实际应用中,开发者经常会遇到需要获取关键词对应嵌入向量的需求,这对于后续的分析和处理非常重要。
嵌入向量的生成过程
KeyBERT的核心方法extract_embeddings()会为输入文档中的所有单词生成嵌入向量。值得注意的是,这个过程会自动过滤掉停用词,因此生成的word_embeddings并不包含文档中的全部单词。
当调用extract_keywords()方法时,KeyBERT会从这些预计算的嵌入向量中筛选出最具代表性的关键词。这就是为什么关键词列表和原始单词嵌入向量在维度上不一致的原因。
获取关键词嵌入的解决方案
由于KeyBERT内部使用的是Sentence-BERT框架,虽然该框架主要用于生成句子级嵌入,但它同样能够有效地生成单词级嵌入。Sentence-BERT模型会首先生成上下文相关的token嵌入,然后通过平均池化等方式聚合这些token表示。
因此,要获取关键词的嵌入向量,可以采用以下方法:
-
直接使用Sentence-BERT模型:将提取出的关键词单独输入Sentence-BERT模型,获取它们的嵌入表示。这种方法虽然需要额外计算,但能确保嵌入质量。
-
从原始嵌入中匹配:如果希望复用KeyBERT已经计算的嵌入,可以尝试将关键词与原始单词列表进行匹配。但由于停用词过滤和可能的词形变化处理,这种方法实现起来较为复杂。
实际应用建议
对于大多数应用场景,建议采用第一种方法,即使用Sentence-BERT直接嵌入关键词。这种方法不仅简单可靠,而且:
- 保持了嵌入的一致性
- 避免了复杂的匹配逻辑
- 能够处理关键词在不同上下文中的变化
需要注意的是,虽然Sentence-BERT主要用于句子嵌入,但其底层基于Transformer架构,对单词级表示同样有效。实验表明,这种方法生成的关键词嵌入在各种下游任务中表现良好。
总结
在KeyBERT项目中获取关键词嵌入需要理解其内部工作机制。虽然KeyBERT本身不直接提供关键词嵌入的输出接口,但通过合理使用Sentence-BERT模型,开发者可以轻松实现这一功能。这种方法既保持了模型的优势,又为后续的关键词分析和应用提供了便利。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00