Splunk Security Content 项目教程
1. 项目介绍
Splunk Security Content 是一个开源项目,旨在为安全团队提供一套全面的分析故事、检测和响应工具。该项目包含了大量的分析故事(Analytic Stories),这些故事是安全指南,提供了关于战术、技术和程序(TTPs)的背景信息,并映射到MITRE ATT&CK框架、Lockheed Martin网络杀伤链和CIS控制。此外,该项目还包括Splunk搜索、机器学习算法和Splunk Phantom剧本(在可用的情况下),所有这些都旨在协同工作,以检测、调查和响应威胁。
2. 项目快速启动
2.1 克隆项目
首先,你需要克隆Splunk Security Content项目到本地:
git clone https://github.com/splunk/security_content.git
2.2 安装依赖
进入项目目录并安装必要的依赖:
cd security_content
pip install -r requirements.txt
2.3 配置Splunk环境
确保你已经安装并配置了Splunk Enterprise或Splunk Cloud环境。你可以通过以下步骤将内容部署到Splunk中:
- 下载最新的Splunk Security Content更新包(ESCU)。
- 在Splunk中安装ESCU应用。
- 配置Splunk搜索、告警和响应剧本。
2.4 运行示例检测
你可以通过运行一些示例检测来验证安装是否成功。以下是一个简单的检测示例:
splunk search "index=main sourcetype=access_combined | stats count by status"
3. 应用案例和最佳实践
3.1 检测恶意软件
Splunk Security Content提供了多种检测恶意软件的分析故事。例如,你可以使用“Ransomware”分析故事来检测潜在的勒索软件活动。
3.2 响应安全事件
通过使用Splunk Security Content中的剧本(Playbooks),你可以自动化响应安全事件的过程。例如,当检测到恶意活动时,剧本可以自动隔离受影响的系统。
3.3 数据收集和分析
Splunk Security Content还包括数据收集和分析的最佳实践。你可以使用“Data Collection”分析故事来确保所有必要的数据源都被正确收集和索引。
4. 典型生态项目
4.1 Splunk Attack Range
Splunk Attack Range 是一个攻击模拟实验室,围绕Splunk构建。它允许安全团队在受控环境中测试和验证检测和响应策略。
4.2 Contentctl
Contentctl 是一个工具,用于构建、测试和打包Splunk Security Content。它帮助开发者自动化内容开发流程,确保内容的质量和一致性。
4.3 Splunk Enterprise Security (ES)
Splunk Enterprise Security 是一个高级安全信息和事件管理(SIEM)解决方案,集成了Splunk Security Content,提供全面的安全监控和响应能力。
通过这些生态项目,Splunk Security Content 提供了一个完整的安全解决方案,帮助组织更好地检测、调查和响应安全威胁。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00