动态精细化网络与SKU110K-R:面向密集排列目标检测的利器
项目介绍
在计算机视觉领域,目标检测是一个核心任务,尤其在处理密集排列和定向目标时,传统的检测方法往往难以胜任。为了解决这一难题,Xingjia Pan等人提出了一种名为动态精细化网络(Dynamic Refinement Network, DRN)的创新方法,并结合SKU110K-R数据集,为定向和密集排列目标检测提供了强大的解决方案。
DRN通过动态调整感受野和对象感知的方式,实现了对目标的精细化检测。而SKU110K-R数据集则提供了丰富的定向目标标注,为训练和评估提供了坚实的基础。
项目技术分析
动态精细化网络(DRN)
DRN的核心在于其特征选择模块(Feature Selection Module, FSM)和动态精细化头(Dynamic Refinement Heads, DRHs)。FSM通过自适应调整感受野,选择最适合的特征;而DRHs则在对象感知的方式下,动态地精细化预测结果。这种设计使得DRN在处理密集排列和定向目标时,表现出色。
SKU110K-R数据集
SKU110K-R是SKU110K数据集的扩展版本,提供了更多的定向目标标注。通过使用旋转增强脚本,用户可以轻松生成SKU110K-R数据集,并利用其丰富的标注信息进行训练和评估。
评估工具
项目还提供了cocoapi_ro和angle_nms等工具,用于评估旋转边界框和处理后处理中的非极大值抑制(NMS)。这些工具的引入,使得评估和后处理更加高效和准确。
旋转卷积层
为了进一步提升检测性能,项目还引入了旋转卷积层(Rotation Conv Layer)。通过安装dcn_v2并修改相关路径,用户可以轻松集成这一高级卷积层,从而在检测任务中获得更好的表现。
项目及技术应用场景
DRN和SKU110K-R的应用场景非常广泛,尤其适用于以下领域:
- 零售业:在零售场景中,商品通常以密集排列的方式陈列,DRN能够准确检测和定位这些商品,为库存管理和自动化货架扫描提供支持。
- 物流和仓储:在物流和仓储管理中,货物通常以定向和密集排列的方式堆放,DRN能够高效地检测和分类这些货物,提升仓储管理的效率。
- 自动驾驶:在自动驾驶领域,DRN可以用于检测和跟踪道路上的车辆、行人等目标,尤其是在复杂的城市环境中,其定向检测能力尤为重要。
项目特点
- 动态精细化:DRN通过动态调整感受野和对象感知的方式,实现了对目标的精细化检测,显著提升了检测精度。
- 丰富的数据集:SKU110K-R提供了丰富的定向目标标注,为训练和评估提供了坚实的基础。
- 高效的评估工具:项目提供了cocoapi_ro和angle_nms等工具,使得评估和后处理更加高效和准确。
- 高级卷积层:旋转卷积层的引入,进一步提升了检测性能,使得DRN在复杂场景中表现出色。
结语
DRN和SKU110K-R为定向和密集排列目标检测提供了一套完整的解决方案,无论是在零售、物流还是自动驾驶等领域,都具有广泛的应用前景。如果你正在寻找一种高效、准确的目标检测方法,不妨尝试一下这个开源项目,相信它会为你的工作带来意想不到的惊喜。
项目链接:DRN and SKU110K-R
论文链接:Dynamic Refinement Network for Oriented and Densely Packed Object Detection
联系我们:
Xingjia Pan: xingjia.pan@nlpr.ia.ac.cn
Yuqiang Ren: condiren@tencent.com
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









