在ms-swift框架中实现回归任务的技术实践
背景介绍
ms-swift框架是一个功能强大的深度学习训练框架,主要用于自然语言处理任务。虽然框架默认支持分类任务,但在实际应用中,我们经常需要处理回归任务(Regression Task),即预测连续值而非离散类别。本文将详细介绍如何在ms-swift框架中实现回归任务的技术方案。
回归任务的技术挑战
在ms-swift框架中实现回归任务时,开发者可能会遇到以下几个关键问题:
-
任务类型识别问题:当设置num_labels=1时,框架会默认将其识别为序列分类(seq_cls)任务,这可能导致不兼容的行为。
-
数据类型问题:框架默认将标签(label)转换为torch.long类型,而回归任务需要torch.float32类型。
-
评估指标问题:框架默认计算准确率(compute_acc),这不适用于回归任务。
-
标签映射问题:Config中的label2id会将所有标签映射为类别0,这在回归任务中是不合理的。
解决方案
1. 修改模型配置
对于回归任务,需要确保模型输出层能够处理连续值预测。可以通过注册自定义模型来实现:
from swift import SwiftModel
class RegressionModel(SwiftModel):
def __init__(self, base_model):
super().__init__(base_model)
# 修改输出层为回归任务适配
self.regression_head = nn.Linear(base_model.config.hidden_size, 1)
def forward(self, input_ids, attention_mask=None, labels=None):
outputs = self.base_model(input_ids, attention_mask=attention_mask)
sequence_output = outputs.last_hidden_state
logits = self.regression_head(sequence_output[:, 0, :]) # 取[CLS]标记
loss = None
if labels is not None:
loss_fct = nn.MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1).float())
return (loss, logits) if loss is not None else logits
2. 数据处理适配
确保数据加载时标签被正确处理为浮点类型:
from torch.utils.data import Dataset
class RegressionDataset(Dataset):
def __init__(self, data_path, tokenizer, max_length):
self.data = load_json(data_path)
self.tokenizer = tokenizer
self.max_length = max_length
def __getitem__(self, idx):
item = self.data[idx]
inputs = self.tokenizer(
item["text"],
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
# 确保标签是浮点类型
inputs["labels"] = torch.tensor(item["label"], dtype=torch.float32)
return inputs
3. 自定义评估指标
实现适合回归任务的评估指标:
from sklearn.metrics import mean_squared_error, r2_score
def compute_regression_metrics(eval_pred):
predictions, labels = eval_pred
mse = mean_squared_error(labels, predictions)
r2 = r2_score(labels, predictions)
return {"mse": mse, "r2_score": r2}
4. 训练配置调整
在训练脚本中需要做以下调整:
# 关键参数配置
--num_labels 1 # 输出维度为1
--metric regression # 使用回归指标
--use_chat_template false # 禁用对话模板
--torch_dtype float32 # 确保使用浮点类型
实践建议
-
损失函数选择:对于回归任务,通常使用均方误差(MSE)损失,但在某些场景下,平均绝对误差(MAE)可能更合适。
-
学习率调整:回归任务通常需要比分类任务更小的学习率,建议从1e-5开始尝试。
-
模型选择:虽然可以使用预训练语言模型进行微调,但对于纯数值回归任务,线性回归或简单神经网络可能更高效。
-
特征工程:考虑在输入文本之外添加数值特征,可以显著提升回归性能。
-
归一化处理:对标签值进行归一化(如Min-Max或Z-score)可以改善训练稳定性。
总结
在ms-swift框架中实现回归任务虽然需要一些额外配置,但通过自定义模型、调整数据处理流程和实现合适的评估指标,完全可以满足各种回归场景的需求。本文提供的解决方案已经在实际项目中得到验证,可以作为开发者的参考实现。随着框架的迭代更新,未来可能会原生支持回归任务,进一步简化开发流程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00