ZMarkupParser 使用教程
项目介绍
ZMarkupParser 是一个纯Swift编写的库,专为iOS开发者设计,用于将HTML字符串转换成NSAttributedString,同时支持自定义样式和标签处理。该库通过纯Swift和正则表达式解析HTML,具备自动修正无效HTML字符串的能力,包括混合或孤立标签的问题。相比于基于XMLParser的解析器,它对HTML标签的兼容性更佳,允许用户轻松扩展标签支持并定制化标签的渲染风格。
项目快速启动
要快速开始使用ZMarkupParser,首先确保你的开发环境是Xcode,并且项目支持Swift。接着,可以通过CocoaPods或者Swift Package Manager来集成这个库。
使用CocoaPods
在你的Podfile中添加以下行:
pod 'ZMarkupParser'
然后运行 pod install.
使用Swift Package Manager
对于Swift Package Manager,在Package.swift文件的dependencies部分添加:
.package(url: "https://github.com/ZhgChgLi/ZMarkupParser.git", from: "最新版本号")
之后执行 swift package resolve.
示例代码
初始化并使用ZMarkupParser进行HTML到AttributedString的转换:
import ZMarkupParser
let htmlString = "<strong>Hello, World!</strong>"
let parser = ZHTMLParserBuilder()
.init(withDefaults())
.set(rootStyle: MarkupStyle(font: MarkupStyleFont(size: 17)))
.build()
if let attributedString = parser.parse(htmlString) {
// 使用attributedString于UILabel或其他文本视图中
myLabel.attributedText = attributedString
}
应用案例和最佳实践
当你需要在应用中展示从网页抓取的内容,但希望保持一致的UI风格时,ZMarkupParser非常有用。比如,你可以定义一套统一的样式规则,应用于所有从HTML中提取的文本,确保即便内容源多样,显示风格依然统一。最佳实践中,建议预先定义好常用的标签映射和样式,以减少运行时计算,提高性能。
典型生态项目
虽然该项目本身未直接提及特定的生态整合案例,但在实际应用中,ZMarkupParser可以广泛地被集成到任何需要展示富文本的iOS应用中,如新闻阅读应用、博客平台客户端、社交媒体应用等。开发者社区中的项目可能包含了此库的应用示例,通过查看依赖此库的其他开源项目或在论坛、博客分享中寻找“谁在使用ZMarkupParser”的实例,可以进一步探索其在真实世界应用中的策略和效果。
如果你发现ZMarkupParser在某个具体项目中的优秀应用实例,也可以贡献PR更新到项目的“Who is using”部分,共同丰富项目文档和社区资源。
以上就是关于ZMarkupParser的基本介绍、快速启动指南以及一些潜在的应用场景。使用过程中,记得查阅项目官方文档获取更多详细信息和技术支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00