ZMarkupParser 使用教程
项目介绍
ZMarkupParser 是一个纯Swift编写的库,专为iOS开发者设计,用于将HTML字符串转换成NSAttributedString,同时支持自定义样式和标签处理。该库通过纯Swift和正则表达式解析HTML,具备自动修正无效HTML字符串的能力,包括混合或孤立标签的问题。相比于基于XMLParser的解析器,它对HTML标签的兼容性更佳,允许用户轻松扩展标签支持并定制化标签的渲染风格。
项目快速启动
要快速开始使用ZMarkupParser,首先确保你的开发环境是Xcode,并且项目支持Swift。接着,可以通过CocoaPods或者Swift Package Manager来集成这个库。
使用CocoaPods
在你的Podfile中添加以下行:
pod 'ZMarkupParser'
然后运行 pod install.
使用Swift Package Manager
对于Swift Package Manager,在Package.swift文件的dependencies部分添加:
.package(url: "https://github.com/ZhgChgLi/ZMarkupParser.git", from: "最新版本号")
之后执行 swift package resolve.
示例代码
初始化并使用ZMarkupParser进行HTML到AttributedString的转换:
import ZMarkupParser
let htmlString = "<strong>Hello, World!</strong>"
let parser = ZHTMLParserBuilder()
.init(withDefaults())
.set(rootStyle: MarkupStyle(font: MarkupStyleFont(size: 17)))
.build()
if let attributedString = parser.parse(htmlString) {
// 使用attributedString于UILabel或其他文本视图中
myLabel.attributedText = attributedString
}
应用案例和最佳实践
当你需要在应用中展示从网页抓取的内容,但希望保持一致的UI风格时,ZMarkupParser非常有用。比如,你可以定义一套统一的样式规则,应用于所有从HTML中提取的文本,确保即便内容源多样,显示风格依然统一。最佳实践中,建议预先定义好常用的标签映射和样式,以减少运行时计算,提高性能。
典型生态项目
虽然该项目本身未直接提及特定的生态整合案例,但在实际应用中,ZMarkupParser可以广泛地被集成到任何需要展示富文本的iOS应用中,如新闻阅读应用、博客平台客户端、社交媒体应用等。开发者社区中的项目可能包含了此库的应用示例,通过查看依赖此库的其他开源项目或在论坛、博客分享中寻找“谁在使用ZMarkupParser”的实例,可以进一步探索其在真实世界应用中的策略和效果。
如果你发现ZMarkupParser在某个具体项目中的优秀应用实例,也可以贡献PR更新到项目的“Who is using”部分,共同丰富项目文档和社区资源。
以上就是关于ZMarkupParser的基本介绍、快速启动指南以及一些潜在的应用场景。使用过程中,记得查阅项目官方文档获取更多详细信息和技术支持。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00