SageMaker Python SDK 中 ProcessingStep 代码路径配置的注意事项
2025-07-04 03:47:25作者:申梦珏Efrain
sagemaker-python-sdk
A library for training and deploying machine learning models on Amazon SageMaker
在 AWS SageMaker Python SDK 中使用 ProcessingStep 时,开发者经常会遇到关于代码路径配置的困惑。本文将深入解析这一技术细节,帮助开发者正确配置处理步骤。
核心概念解析
SageMaker 提供了两种主要的处理器类来处理数据:
- ScriptProcessor:专为需要上传自定义脚本的场景设计
- Processor:更通用的处理器,适用于使用预构建容器镜像的情况
ScriptProcessor 的使用场景
ScriptProcessor 是专门为需要动态上传处理脚本的场景设计的。当使用此类时,必须通过 code 参数指定脚本位置,这是其设计目的决定的。典型使用模式如下:
script_processor = ScriptProcessor(
image_uri=base_image_uri,
command=["python3"],
role=execution_role,
instance_type="ml.m5.xlarge",
instance_count=1
)
step_args = script_processor.run(
code="preprocessing.py", # 必须提供脚本路径
inputs=[...],
outputs=[...]
)
Processor 的灵活应用
对于已经将处理逻辑内置在容器镜像中的场景,应该使用更通用的 Processor 类。这种方式不需要额外指定脚本文件,更适合自定义容器的工作负载:
custom_processor = Processor(
image_uri=custom_image_uri, # 包含处理逻辑的自定义镜像
role=execution_role,
instance_type="ml.m5.xlarge",
instance_count=1
)
step_args = custom_processor.run(
inputs=[...], # 不需要code参数
outputs=[...]
)
最佳实践建议
- 明确区分使用场景:需要动态上传脚本时用 ScriptProcessor,使用预构建镜像时用 Processor
- 容器设计原则:将稳定的处理逻辑固化到镜像中,将可能变化的逻辑通过 ScriptProcessor 动态注入
- 错误处理:当遇到代码路径相关错误时,首先检查是否选用了正确的处理器类型
常见问题排查
开发者常遇到的 ValueError 通常源于:
- 错误地在 ScriptProcessor 场景中省略了 code 参数
- 在 Processor 场景中不必要地提供了 code 参数
理解这两种处理器的设计差异,能够帮助开发者更高效地构建 SageMaker 处理流水线,避免不必要的配置错误。
sagemaker-python-sdk
A library for training and deploying machine learning models on Amazon SageMaker
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328