SageMaker Python SDK 中 ProcessingStep 代码路径配置的注意事项
2025-07-04 03:47:25作者:申梦珏Efrain
sagemaker-python-sdk
A library for training and deploying machine learning models on Amazon SageMaker
在 AWS SageMaker Python SDK 中使用 ProcessingStep 时,开发者经常会遇到关于代码路径配置的困惑。本文将深入解析这一技术细节,帮助开发者正确配置处理步骤。
核心概念解析
SageMaker 提供了两种主要的处理器类来处理数据:
- ScriptProcessor:专为需要上传自定义脚本的场景设计
- Processor:更通用的处理器,适用于使用预构建容器镜像的情况
ScriptProcessor 的使用场景
ScriptProcessor 是专门为需要动态上传处理脚本的场景设计的。当使用此类时,必须通过 code 参数指定脚本位置,这是其设计目的决定的。典型使用模式如下:
script_processor = ScriptProcessor(
image_uri=base_image_uri,
command=["python3"],
role=execution_role,
instance_type="ml.m5.xlarge",
instance_count=1
)
step_args = script_processor.run(
code="preprocessing.py", # 必须提供脚本路径
inputs=[...],
outputs=[...]
)
Processor 的灵活应用
对于已经将处理逻辑内置在容器镜像中的场景,应该使用更通用的 Processor 类。这种方式不需要额外指定脚本文件,更适合自定义容器的工作负载:
custom_processor = Processor(
image_uri=custom_image_uri, # 包含处理逻辑的自定义镜像
role=execution_role,
instance_type="ml.m5.xlarge",
instance_count=1
)
step_args = custom_processor.run(
inputs=[...], # 不需要code参数
outputs=[...]
)
最佳实践建议
- 明确区分使用场景:需要动态上传脚本时用 ScriptProcessor,使用预构建镜像时用 Processor
- 容器设计原则:将稳定的处理逻辑固化到镜像中,将可能变化的逻辑通过 ScriptProcessor 动态注入
- 错误处理:当遇到代码路径相关错误时,首先检查是否选用了正确的处理器类型
常见问题排查
开发者常遇到的 ValueError 通常源于:
- 错误地在 ScriptProcessor 场景中省略了 code 参数
- 在 Processor 场景中不必要地提供了 code 参数
理解这两种处理器的设计差异,能够帮助开发者更高效地构建 SageMaker 处理流水线,避免不必要的配置错误。
sagemaker-python-sdk
A library for training and deploying machine learning models on Amazon SageMaker
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137