XTuner微调InternVL模型时如何实现断点续训与多阶段微调
2025-06-13 04:50:46作者:宣利权Counsellor
在XTuner项目中,当用户使用InternVL系列大模型进行微调时,经常会遇到一个关键问题:如何有效地实现断点续训和多阶段微调。本文将深入分析这一技术挑战,并提供专业解决方案。
问题背景分析
在模型微调过程中,开发者经常需要根据训练效果调整训练策略。理想情况下,当发现模型欠拟合时,应该能够从最近的检查点继续训练,而不是从头开始。然而,XTuner在处理InternVL系列模型时,检查点机制存在一些特殊之处。
技术难点解析
InternLM系列模型与InternVL系列模型在检查点保存机制上存在显著差异:
-
InternLM系列:保存的
.pth文件实际上是一个目录,包含完整的模型状态和优化器状态,结构如下:iter_1020.pth/ ├── bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt └── mp_rank_00_model_states.pt这种结构可以直接用于
load_from参数实现断点续训。 -
InternVL系列:仅保存单一的
.pth文件,缺少优化器状态等关键信息,导致直接使用load_from参数时会触发DeepSpeed的断言错误。
专业解决方案
针对InternVL系列的微调需求,我们推荐以下两种专业解决方案:
方案一:模型合并后重新微调
- 使用XTuner提供的模型合并工具,将第一阶段训练的LoRA权重与基础模型合并
- 基于合并后的完整模型启动第二阶段微调
- 重复此过程实现多阶段渐进式微调
这种方法虽然需要额外的合并步骤,但能够确保每阶段训练都基于最优的模型状态。
方案二:自定义检查点保存逻辑
对于高级用户,可以扩展XTuner的DeepSpeed策略实现:
- 重写
deepspeed.py中的检查点保存逻辑 - 确保保存完整的优化器状态和模型参数
- 实现自定义的检查点加载机制
这种方法需要对DeepSpeed和XTuner内部机制有深入理解,适合有定制化需求的团队。
最佳实践建议
- 训练前规划:预先设计好训练阶段和评估节点
- 资源管理:为模型合并步骤预留足够的存储空间
- 版本控制:对每个阶段的模型和训练配置进行严格版本管理
- 评估策略:在每个阶段结束后进行全面的模型评估
技术展望
随着XTuner项目的持续发展,未来版本有望原生支持更灵活的断点续训机制。开发团队正在考虑以下改进方向:
- 统一的检查点格式标准
- 自动化的模型合并流程
- 智能化的训练阶段管理
对于需要精细微调的研究人员和开发者,理解当前的技术限制并采用合适的解决方案,仍然能够实现高质量的多阶段模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134