XTuner微调InternVL模型时如何实现断点续训与多阶段微调
2025-06-13 04:50:46作者:宣利权Counsellor
在XTuner项目中,当用户使用InternVL系列大模型进行微调时,经常会遇到一个关键问题:如何有效地实现断点续训和多阶段微调。本文将深入分析这一技术挑战,并提供专业解决方案。
问题背景分析
在模型微调过程中,开发者经常需要根据训练效果调整训练策略。理想情况下,当发现模型欠拟合时,应该能够从最近的检查点继续训练,而不是从头开始。然而,XTuner在处理InternVL系列模型时,检查点机制存在一些特殊之处。
技术难点解析
InternLM系列模型与InternVL系列模型在检查点保存机制上存在显著差异:
-
InternLM系列:保存的
.pth文件实际上是一个目录,包含完整的模型状态和优化器状态,结构如下:iter_1020.pth/ ├── bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt └── mp_rank_00_model_states.pt这种结构可以直接用于
load_from参数实现断点续训。 -
InternVL系列:仅保存单一的
.pth文件,缺少优化器状态等关键信息,导致直接使用load_from参数时会触发DeepSpeed的断言错误。
专业解决方案
针对InternVL系列的微调需求,我们推荐以下两种专业解决方案:
方案一:模型合并后重新微调
- 使用XTuner提供的模型合并工具,将第一阶段训练的LoRA权重与基础模型合并
- 基于合并后的完整模型启动第二阶段微调
- 重复此过程实现多阶段渐进式微调
这种方法虽然需要额外的合并步骤,但能够确保每阶段训练都基于最优的模型状态。
方案二:自定义检查点保存逻辑
对于高级用户,可以扩展XTuner的DeepSpeed策略实现:
- 重写
deepspeed.py中的检查点保存逻辑 - 确保保存完整的优化器状态和模型参数
- 实现自定义的检查点加载机制
这种方法需要对DeepSpeed和XTuner内部机制有深入理解,适合有定制化需求的团队。
最佳实践建议
- 训练前规划:预先设计好训练阶段和评估节点
- 资源管理:为模型合并步骤预留足够的存储空间
- 版本控制:对每个阶段的模型和训练配置进行严格版本管理
- 评估策略:在每个阶段结束后进行全面的模型评估
技术展望
随着XTuner项目的持续发展,未来版本有望原生支持更灵活的断点续训机制。开发团队正在考虑以下改进方向:
- 统一的检查点格式标准
- 自动化的模型合并流程
- 智能化的训练阶段管理
对于需要精细微调的研究人员和开发者,理解当前的技术限制并采用合适的解决方案,仍然能够实现高质量的多阶段模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322