XTuner微调InternVL模型时如何实现断点续训与多阶段微调
2025-06-13 04:50:46作者:宣利权Counsellor
在XTuner项目中,当用户使用InternVL系列大模型进行微调时,经常会遇到一个关键问题:如何有效地实现断点续训和多阶段微调。本文将深入分析这一技术挑战,并提供专业解决方案。
问题背景分析
在模型微调过程中,开发者经常需要根据训练效果调整训练策略。理想情况下,当发现模型欠拟合时,应该能够从最近的检查点继续训练,而不是从头开始。然而,XTuner在处理InternVL系列模型时,检查点机制存在一些特殊之处。
技术难点解析
InternLM系列模型与InternVL系列模型在检查点保存机制上存在显著差异:
-
InternLM系列:保存的
.pth文件实际上是一个目录,包含完整的模型状态和优化器状态,结构如下:iter_1020.pth/ ├── bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt └── mp_rank_00_model_states.pt这种结构可以直接用于
load_from参数实现断点续训。 -
InternVL系列:仅保存单一的
.pth文件,缺少优化器状态等关键信息,导致直接使用load_from参数时会触发DeepSpeed的断言错误。
专业解决方案
针对InternVL系列的微调需求,我们推荐以下两种专业解决方案:
方案一:模型合并后重新微调
- 使用XTuner提供的模型合并工具,将第一阶段训练的LoRA权重与基础模型合并
- 基于合并后的完整模型启动第二阶段微调
- 重复此过程实现多阶段渐进式微调
这种方法虽然需要额外的合并步骤,但能够确保每阶段训练都基于最优的模型状态。
方案二:自定义检查点保存逻辑
对于高级用户,可以扩展XTuner的DeepSpeed策略实现:
- 重写
deepspeed.py中的检查点保存逻辑 - 确保保存完整的优化器状态和模型参数
- 实现自定义的检查点加载机制
这种方法需要对DeepSpeed和XTuner内部机制有深入理解,适合有定制化需求的团队。
最佳实践建议
- 训练前规划:预先设计好训练阶段和评估节点
- 资源管理:为模型合并步骤预留足够的存储空间
- 版本控制:对每个阶段的模型和训练配置进行严格版本管理
- 评估策略:在每个阶段结束后进行全面的模型评估
技术展望
随着XTuner项目的持续发展,未来版本有望原生支持更灵活的断点续训机制。开发团队正在考虑以下改进方向:
- 统一的检查点格式标准
- 自动化的模型合并流程
- 智能化的训练阶段管理
对于需要精细微调的研究人员和开发者,理解当前的技术限制并采用合适的解决方案,仍然能够实现高质量的多阶段模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76