Grafana OnCall 服务指标采集兼容性问题分析与解决方案
问题背景
Grafana OnCall 是一款开源的告警管理平台,它提供了 Prometheus 格式的指标导出功能。然而,在实际使用过程中,用户发现当使用 Telegraf 采集 OnCall 服务的 /metrics/ 端点时,会遇到 HTTP 406 Not Acceptable 错误。
问题分析
现象描述
当 Telegraf 尝试采集 OnCall 服务的指标时,服务端返回 406 状态码,表示无法接受客户端请求的内容类型。具体表现为:
- 使用 Telegraf 默认配置采集时失败
- 手动使用 curl 模拟 Telegraf 的 Accept 头时同样失败
- 直接使用 curl 不带特殊头时则能成功获取指标
根本原因
OnCall 服务的 /metrics/ 端点对 Accept 头的处理存在限制。Telegraf 默认会发送包含多种内容类型的 Accept 头,其中包括:
application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.7,text/plain;version=0.0.4;q=0.3
而 OnCall 服务端仅接受简单的 text/plain 或 application/json 类型,导致当客户端发送复杂的 Accept 头时,服务端返回 406 错误。
Prometheus 兼容性考虑
虽然 OnCall 的指标端点返回的是标准的 Prometheus 文本格式(Content-Type: text/plain; version=0.0.4),但其对 Accept 头的处理却不如标准 Prometheus 服务灵活。标准的 Prometheus 服务通常能够处理各种 Accept 头组合,而 OnCall 的实现则较为严格。
解决方案
临时解决方案
对于使用 Telegraf 的用户,可以通过修改 Telegraf 配置来解决此问题:
[[inputs.prometheus]]
urls = ["http://localhost:8080/metrics/"]
http_headers = {"Accept" = "text/plain,application/json"}
这个配置显式指定了 Accept 头,避免了发送 Telegraf 默认的复杂内容类型组合。
长期建议
从产品完善的角度,建议 Grafana OnCall 服务改进其指标端点的实现:
- 放宽对 Accept 头的限制,至少接受包含
text/plain的任何组合 - 保持与标准 Prometheus 服务的兼容性,正确处理各种常见的内容类型协商
- 在文档中明确说明指标端点的兼容性要求
技术启示
这个案例展示了在实现监控指标端点时需要注意的几个重要方面:
- 内容协商:指标端点应该灵活处理各种 Accept 头,特别是当声称兼容某种标准(如 Prometheus)时
- 兼容性测试:不仅要测试功能本身,还要测试与常见采集工具(如 Telegraf、Prometheus server 等)的交互
- 配置灵活性:采集工具通常提供覆盖默认行为的选项,了解这些选项能帮助解决兼容性问题
通过这个问题的分析和解决,用户不仅能够临时绕过采集问题,也能更深入地理解监控数据采集过程中内容协商的重要性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00