深入理解Serde-rs/json中的64位整数字符串序列化问题
2025-06-08 16:30:24作者:滕妙奇
在Rust生态系统中,Serde是一个广泛使用的序列化和反序列化框架,而serde-rs/json则是其针对JSON格式的实现。本文将深入探讨在处理64位整数时遇到的序列化挑战,特别是如何将大整数序列化为JSON字符串而非数字类型的问题。
问题背景
在JavaScript中,由于数字类型的精度限制,无法准确表示所有64位整数。当JSON中包含超出JavaScript安全整数范围(±2^53-1)的数字时,前端JavaScript代码解析时可能会丢失精度。因此,常见的解决方案是将这些大整数序列化为字符串形式。
基本解决方案
Serde提供了几种方式来处理这个问题:
- 字段级注解:使用
#[serde(with = "string")]
属性标记特定字段 - serde_with宏:通过
#[serde_as(as = "DisplayFromStr")]
实现更灵活的转换
这些方法对于结构体中的字段非常有效,但当遇到数组、枚举等复杂类型时,直接应用这些方法可能会遇到困难。
复杂场景挑战
在实际开发中,我们经常会遇到以下复杂情况:
- 数组中的64位整数:当64位整数作为数组元素时,无法直接在类型上应用注解
- 枚举变体中的64位整数:枚举类型的变体参数也需要特殊处理
- 嵌套结构中的64位整数:多层嵌套结构中的大整数处理
高级解决方案
通过深入研究serde_with的功能,我们发现对于数组类型,可以使用特殊的语法来标记每个元素的序列化方式:
#[serde_as(as = "[DisplayFromStr; 3]")]
pub f3: [u64; 3],
这种语法明确指定了数组长度和每个元素的转换方式,解决了数组元素的序列化问题。
实际应用示例
以下是一个完整的示例,展示了如何处理各种情况下的64位整数序列化:
use serde::{Deserialize, Serialize};
use serde_with::{serde_as, DisplayFromStr};
#[serde_as]
#[derive(Serialize, Deserialize)]
struct MyType {
pub f1: u32,
#[serde_as(as = "DisplayFromStr")]
pub f2: u64,
#[serde_as(as = "[DisplayFromStr; 3]")]
pub f3: [u64; 3],
}
#[serde_as]
#[derive(Serialize, Deserialize)]
pub enum MyEnum {
C1(#[serde_as(as = "DisplayFromStr")] u64),
}
这个示例中:
f2
字段被正确序列化为字符串- 数组
f3
的每个元素都被序列化为字符串 - 枚举变体
C1
的参数也被序列化为字符串
技术原理
serde_with库通过自定义序列化/反序列化逻辑,实现了类型系统的灵活转换。其核心是:
- Display和FromStr trait:利用Rust的标准trait实现字符串与类型的相互转换
- 过程宏:在编译时生成特定的序列化代码
- 类型系统:通过泛型支持多种类型的转换
最佳实践
在实际项目中,建议:
- 统一处理所有可能超出JavaScript安全整数范围的整数类型
- 为相关类型编写自定义的序列化/反序列化逻辑
- 在API文档中明确说明大整数的字符串表示形式
- 编写全面的测试用例验证边界情况
总结
通过Serde和serde_with的组合使用,我们可以灵活地处理Rust中64位整数到JSON字符串的序列化需求。无论是简单的字段、数组元素还是枚举变体参数,都能找到合适的解决方案。理解这些技术细节有助于我们构建更健壮的跨语言数据交换系统。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133