深入理解Serde-rs/json中的64位整数字符串序列化问题
2025-06-08 19:38:39作者:滕妙奇
在Rust生态系统中,Serde是一个广泛使用的序列化和反序列化框架,而serde-rs/json则是其针对JSON格式的实现。本文将深入探讨在处理64位整数时遇到的序列化挑战,特别是如何将大整数序列化为JSON字符串而非数字类型的问题。
问题背景
在JavaScript中,由于数字类型的精度限制,无法准确表示所有64位整数。当JSON中包含超出JavaScript安全整数范围(±2^53-1)的数字时,前端JavaScript代码解析时可能会丢失精度。因此,常见的解决方案是将这些大整数序列化为字符串形式。
基本解决方案
Serde提供了几种方式来处理这个问题:
- 字段级注解:使用
#[serde(with = "string")]属性标记特定字段 - serde_with宏:通过
#[serde_as(as = "DisplayFromStr")]实现更灵活的转换
这些方法对于结构体中的字段非常有效,但当遇到数组、枚举等复杂类型时,直接应用这些方法可能会遇到困难。
复杂场景挑战
在实际开发中,我们经常会遇到以下复杂情况:
- 数组中的64位整数:当64位整数作为数组元素时,无法直接在类型上应用注解
- 枚举变体中的64位整数:枚举类型的变体参数也需要特殊处理
- 嵌套结构中的64位整数:多层嵌套结构中的大整数处理
高级解决方案
通过深入研究serde_with的功能,我们发现对于数组类型,可以使用特殊的语法来标记每个元素的序列化方式:
#[serde_as(as = "[DisplayFromStr; 3]")]
pub f3: [u64; 3],
这种语法明确指定了数组长度和每个元素的转换方式,解决了数组元素的序列化问题。
实际应用示例
以下是一个完整的示例,展示了如何处理各种情况下的64位整数序列化:
use serde::{Deserialize, Serialize};
use serde_with::{serde_as, DisplayFromStr};
#[serde_as]
#[derive(Serialize, Deserialize)]
struct MyType {
pub f1: u32,
#[serde_as(as = "DisplayFromStr")]
pub f2: u64,
#[serde_as(as = "[DisplayFromStr; 3]")]
pub f3: [u64; 3],
}
#[serde_as]
#[derive(Serialize, Deserialize)]
pub enum MyEnum {
C1(#[serde_as(as = "DisplayFromStr")] u64),
}
这个示例中:
f2字段被正确序列化为字符串- 数组
f3的每个元素都被序列化为字符串 - 枚举变体
C1的参数也被序列化为字符串
技术原理
serde_with库通过自定义序列化/反序列化逻辑,实现了类型系统的灵活转换。其核心是:
- Display和FromStr trait:利用Rust的标准trait实现字符串与类型的相互转换
- 过程宏:在编译时生成特定的序列化代码
- 类型系统:通过泛型支持多种类型的转换
最佳实践
在实际项目中,建议:
- 统一处理所有可能超出JavaScript安全整数范围的整数类型
- 为相关类型编写自定义的序列化/反序列化逻辑
- 在API文档中明确说明大整数的字符串表示形式
- 编写全面的测试用例验证边界情况
总结
通过Serde和serde_with的组合使用,我们可以灵活地处理Rust中64位整数到JSON字符串的序列化需求。无论是简单的字段、数组元素还是枚举变体参数,都能找到合适的解决方案。理解这些技术细节有助于我们构建更健壮的跨语言数据交换系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759