ARQ 开源项目教程
2024-08-22 04:06:11作者:裘晴惠Vivianne
项目介绍
ARQ 是一个基于 Python 的异步任务队列库,旨在简化后台任务的处理。它使用 Redis 作为任务存储,并支持任务的重试、超时和结果存储。ARQ 的设计目标是提供一个简单、高效且易于扩展的任务处理解决方案。
项目快速启动
安装 ARQ
首先,确保你已经安装了 Python 和 Redis。然后,使用 pip 安装 ARQ:
pip install arq
创建任务
创建一个简单的任务文件 tasks.py:
from arq import create_pool, ArqRedis
from arq.jobs import JobDefs
async def my_task(ctx, arg1, arg2):
return f"Task executed with {arg1} and {arg2}"
async def startup(ctx):
ctx['redis'] = await create_pool(ctx['redis_settings'])
async def shutdown(ctx):
await ctx['redis'].close()
class WorkerSettings:
functions = [my_task]
on_startup = startup
on_shutdown = shutdown
redis_settings = 'redis://localhost:6379'
启动 Worker
使用以下命令启动 Worker:
arq tasks.WorkerSettings
调用任务
在另一个脚本中调用任务:
import asyncio
from arq import create_pool
from tasks import my_task
async def main():
redis = await create_pool('redis://localhost:6379')
job = await redis.enqueue_job('my_task', 'hello', 'world')
result = await job.result()
print(result)
if __name__ == '__main__':
asyncio.run(main())
应用案例和最佳实践
应用案例
ARQ 可以用于各种后台任务处理场景,例如:
- 邮件发送:将邮件发送任务放入队列,由 Worker 异步处理。
- 数据处理:对大量数据进行批处理,提高处理效率。
- 定时任务:使用 ARQ 结合定时任务库(如
APScheduler)实现定时任务调度。
最佳实践
- 任务重试:合理设置任务的重试次数和超时时间,避免资源浪费。
- 监控和日志:使用监控工具(如 Prometheus)和日志系统(如 ELK Stack)监控任务执行情况。
- 并发控制:根据系统资源合理设置 Worker 的并发数,避免资源过载。
典型生态项目
ARQ 可以与其他开源项目结合使用,构建更强大的后台任务处理系统:
- Redis:作为任务存储和消息队列。
- APScheduler:用于定时任务调度。
- Prometheus:用于系统监控和报警。
- ELK Stack:用于日志收集、分析和可视化。
通过这些生态项目的结合,可以构建一个稳定、高效且易于维护的后台任务处理系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355