ModelContextProtocol C SDK中的枚举序列化问题解析
问题背景
在ModelContextProtocol C# SDK的开发过程中,开发人员发现了一个关于枚举序列化的技术问题。当使用GetPromptHandler返回GetPromptResult时,PromptMessage类型中的Role字段在序列化时使用了枚举值的大写形式,而下游工具如Claude和MCP Inspector期望的是小写值。
问题现象
具体表现为,当开发人员尝试通过MCP Inspector调用包含PromptMessage的API时,系统会返回验证错误,提示"Invalid enum value. Expected 'user' | 'assistant', received 'User'"。这表明序列化后的JSON中Role字段的值不符合预期格式。
技术分析
这个问题本质上是.NET中枚举序列化的常见问题。在.NET生态中,默认情况下枚举值会按照其定义时的名称进行序列化,即保持大小写不变。然而,许多Web API和规范要求枚举值使用特定的大小写格式(通常是全小写或蛇形命名法)。
在ModelContextProtocol的案例中,规范明确要求Role枚举值必须是小写形式("user"和"assistant"),而C#枚举定义通常采用首字母大写(User和Assistant),这就导致了序列化结果不符合规范要求。
解决方案探索
开发团队尝试了几种不同的解决方案:
-
全局JsonStringEnumConverter配置:最初通过在JsonSerializerOptions中添加JsonStringEnumConverter并指定SnakeCaseLower命名策略来解决问题。这种方法简单直接,但可能会影响项目中所有枚举的序列化行为。
-
特定枚举的自定义转换器:随后尝试为Role枚举专门创建RoleConverter,继承自JsonStringEnumConverter并指定命名策略。这种方法更加精确,只影响目标枚举。
-
AOT兼容性考虑:由于JsonStringEnumConverter在原生AOT编译中不受支持,解决方案需要同时考虑框架依赖和AOT两种场景。
最终解决方案
结合上述探索,推荐的解决方案是:
- 为Role枚举添加专门的JsonConverter特性,指定自定义的RoleConverter
- 在McpJsonUtilities中配置默认的JsonStringEnumConverter时,明确指定SnakeCaseLower命名策略
- 确保所有相关类型(如ListPromptsResult和GetPromptResult)都被包含在JsonSerializerContext中,以支持AOT编译
这种混合方案既保证了特定枚举的正确序列化,又维持了与AOT编译的兼容性,同时不会过度影响项目中其他枚举的序列化行为。
技术要点总结
-
枚举序列化控制:在需要精确控制枚举序列化格式时,优先考虑为特定枚举创建自定义转换器。
-
命名策略选择:根据API规范要求选择合适的命名策略,常见的包括:
- 原样保留(默认)
- 驼峰命名(CamelCase)
- 蛇形命名小写(SnakeCaseLower)
- 蛇形命名保留大小写(SnakeCase)
-
AOT兼容性:在.NET的AOT编译场景下,需要特别注意:
- 避免使用某些反射-heavy的转换器
- 确保所有需要序列化的类型都被正确包含在JsonSerializerContext中
- 预先注册所有必要的转换器
-
API规范一致性:与外部系统交互时,严格遵守其数据格式规范,包括枚举值的具体表示形式。
这个问题展示了在实际开发中,类型系统、序列化规范和平台特性之间需要仔细协调的重要性,也为处理类似场景提供了有价值的参考模式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00