pg_partman项目:基于多条件的分区表优化实践
2025-07-02 08:32:07作者:史锋燃Gardner
在PostgreSQL数据库管理中,分区表是提升大型数据表查询性能和维护效率的重要手段。pg_partman作为PostgreSQL的扩展工具,为分区表管理提供了自动化支持。本文将探讨一个典型场景:如何利用pg_partman实现基于不同列的多级分区策略,特别是针对"软删除"场景的优化方案。
业务场景分析
在实际应用中,很多系统采用"软删除"机制来处理数据删除操作。这种机制的特点包括:
- 不实际删除数据,而是通过标记字段(如deleted_bool)标识删除状态
 - 设置删除时间戳(deleted_timestamp)记录删除操作时间
 - 保留数据直到满足特定保留期限
 
这种设计带来了两个维度的数据管理需求:
- 活跃数据(未删除)按创建时间(record_timestamp)分区,优化业务查询
 - 已删除数据按删除时间分区,便于过期数据清理
 
技术挑战
传统分区策略通常只能基于单一列进行分区,而上述场景需要:
- 第一级分区:按删除状态(布尔值)分离活跃和已删除数据
 - 第二级分区:对两类数据分别采用不同的时间列进行分区
 
pg_partman解决方案
通过pg_partman可以实现这一复杂分区策略,具体步骤如下:
1. 初始分区设置
首先创建基于删除状态的一级分区。虽然pg_partman原生支持整数范围分区,但可以通过将布尔值转换为整数(0/1)来实现:
-- 将布尔列转换为整数
ALTER TABLE target_table ADD COLUMN deleted_int INTEGER;
UPDATE target_table SET deleted_int = CASE WHEN deleted_bool THEN 1 ELSE 0 END;
然后创建一级分区:
-- 创建按删除状态分区的父表
CREATE TABLE target_table_partitioned (
    -- 原表所有列
    record_timestamp TIMESTAMP,
    deleted_bool BOOLEAN,
    deleted_timestamp TIMESTAMP,
    deleted_int INTEGER,
    -- 其他列...
) PARTITION BY RANGE (deleted_int);
-- 创建活跃数据分区
CREATE TABLE target_table_active PARTITION OF target_table_partitioned
    FOR VALUES FROM (0) TO (1);
-- 创建已删除数据分区
CREATE TABLE target_table_deleted PARTITION OF target_table_partitioned
    FOR VALUES FROM (1) TO (2);
2. 二级分区配置
对两个分区分别设置不同的时间维度分区策略:
-- 对活跃数据分区按记录时间创建子分区
SELECT partman.create_parent(
    p_parent_table => 'public.target_table_active',
    p_control => 'record_timestamp',
    p_type => 'native',
    p_interval => '1 month',
    p_template_table => 'public.template_table'
);
-- 对已删除数据分区按删除时间创建子分区
SELECT partman.create_parent(
    p_parent_table => 'public.target_table_deleted',
    p_control => 'deleted_timestamp',
    p_type => 'native',
    p_interval => '1 month',
    p_template_table => 'public.template_table'
);
3. 模板表设计
为确保分区结构一致,建议创建模板表:
CREATE TABLE public.template_table (
    LIKE public.target_table
    INCLUDING DEFAULTS INCLUDING CONSTRAINTS INCLUDING INDEXES
);
实现优势
这种分层分区策略带来了以下好处:
- 查询性能优化:活跃数据查询只需扫描相关时间范围的分区
 - 维护简化:通过直接删除最旧的已删除分区即可实现数据清理
 - 灵活性:两类数据可以独立配置不同的保留策略和分区粒度
 
注意事项
实施时需考虑:
- 数据迁移策略:从原表迁移到分区表需要合理安排停机窗口
 - 触发器处理:确保业务逻辑中的触发器在分区表上正常工作
 - 监控调整:观察分区策略的实际效果,必要时调整分区粒度
 
总结
通过合理组合pg_partman的功能,我们可以构建适应复杂业务需求的分区策略。这种基于多条件的分区方法不仅适用于软删除场景,也可推广到其他需要多维数据管理的场景中,为大型PostgreSQL数据库的性能优化和维护提供了有力工具。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443