开源项目 `pattern_classification` 使用文档
2024-09-27 02:40:10作者:丁柯新Fawn
1. 项目目录结构及介绍
pattern_classification 项目是一个关于机器学习和模式分类的教程集合。以下是项目的目录结构及其介绍:
pattern_classification/
├── clustering/
│ └── hierarchicalclustering/
├── data/
│ └── data_collecting/
├── data_fitting/
│ └── regression/
├── data_viz/
├── dimensionality_reduction/
├── evaluation/
├── machine_learning/
├── parameter_estimation_techniques/
├── preprocessing/
├── resources/
├── stat_pattern_class/
├── .gitignore
├── LICENSE
├── README.ipynb
├── README.md
目录介绍
- clustering/: 包含与聚类相关的教程和示例,如层次聚类。
- data/: 包含数据收集相关的教程和示例。
- data_fitting/: 包含数据拟合相关的教程和示例,如回归分析。
- data_viz/: 包含数据可视化相关的教程和示例。
- dimensionality_reduction/: 包含降维技术相关的教程和示例,如主成分分析(PCA)。
- evaluation/: 包含模型评估相关的教程和示例。
- machine_learning/: 包含机器学习算法相关的教程和示例。
- parameter_estimation_techniques/: 包含参数估计技术相关的教程和示例。
- preprocessing/: 包含数据预处理相关的教程和示例。
- resources/: 包含资源文件,如LaTeX公式和数据集。
- stat_pattern_class/: 包含统计模式分类相关的教程和示例。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.ipynb: 项目介绍的 Jupyter Notebook 文件。
- README.md: 项目介绍的 Markdown 文件。
2. 项目启动文件介绍
项目的启动文件主要是 README.ipynb 和 README.md。这两个文件提供了项目的总体介绍和使用指南。
README.ipynb
这是一个 Jupyter Notebook 文件,包含了项目的详细介绍、使用示例和代码演示。用户可以通过打开这个文件来了解项目的各个模块和功能。
README.md
这是一个 Markdown 文件,提供了项目的简要介绍和快速入门指南。用户可以通过阅读这个文件来快速了解项目的基本信息和使用方法。
3. 项目的配置文件介绍
项目中主要的配置文件是 .gitignore 和 LICENSE。
.gitignore
这个文件用于配置 Git 忽略的文件和目录。它确保在版本控制中不会包含不必要的文件,如临时文件、缓存文件等。
LICENSE
这个文件包含了项目的许可证信息。pattern_classification 项目使用的是 GPL-3.0 许可证,用户在使用和修改项目时需要遵守该许可证的规定。
通过以上文档,用户可以快速了解 pattern_classification 项目的目录结构、启动文件和配置文件,从而更好地使用和学习该项目。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259