KiTS19 挑战项目教程
2026-01-21 04:15:42作者:农烁颖Land
1. 项目介绍
KiTS19(Kidney Tumor Segmentation Challenge 2019)是一个专注于肾脏和肾脏肿瘤语义分割的开源项目。该项目的目标是推动可靠的肾脏和肾脏肿瘤语义分割方法的发展。KiTS19 提供了 300 个肾脏癌患者的动脉期腹部 CT 扫描图像及其对应的语义分割标签,其中 210 个用于模型训练和验证,90 个用于模型评估。
该项目由 University of Minnesota 和 University of Melbourne 的研究人员发起,并在 MICCAI 2019 会议上进行了展示。通过参与 KiTS19 挑战,研究人员可以开发和评估他们的肾脏和肾脏肿瘤分割算法。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已安装以下依赖:
- Python 3.x
- pip
2.2 克隆项目
首先,克隆 KiTS19 项目到本地:
git clone https://github.com/neheller/kits19
cd kits19
2.3 安装依赖
安装项目所需的 Python 依赖包:
pip3 install -r requirements.txt
2.4 下载数据
运行以下命令下载数据集:
python3 -m starter_code.get_imaging
2.5 数据结构
下载完成后,数据将存储在 data/ 目录下,结构如下:
data/
├── case_00000
│ ├── imaging.nii.gz
│ └── segmentation.nii.gz
├── case_00001
│ ├── imaging.nii.gz
│ └── segmentation.nii.gz
...
└── case_00209
├── imaging.nii.gz
└── segmentation.nii.gz
2.6 加载和可视化数据
使用提供的脚本加载和可视化数据:
from starter_code.utils import load_case
from starter_code.visualize import visualize
# 加载数据
volume, segmentation = load_case("case_00123")
# 可视化数据
visualize("case_00123", "output_directory")
3. 应用案例和最佳实践
3.1 应用案例
KiTS19 数据集可用于开发和评估肾脏和肾脏肿瘤的分割算法。以下是一些应用案例:
- 医学影像分析:利用深度学习技术对肾脏和肾脏肿瘤进行自动分割,辅助医生进行诊断和治疗规划。
- 手术规划:通过分割结果,帮助外科医生更好地理解肿瘤的位置和大小,从而制定更精确的手术方案。
3.2 最佳实践
- 数据预处理:在进行模型训练之前,对数据进行标准化和归一化处理,以提高模型的泛化能力。
- 模型选择:选择适合医学影像分割的深度学习模型,如 U-Net、Mask R-CNN 等。
- 交叉验证:使用交叉验证方法评估模型的性能,确保模型在不同数据集上的表现稳定。
4. 典型生态项目
KiTS19 项目与其他开源项目和工具结合使用,可以进一步提升肾脏和肾脏肿瘤分割的效果。以下是一些典型的生态项目:
- Nibabel:用于加载和处理 NIfTI 格式的医学影像数据。
- PyTorch 和 TensorFlow:用于构建和训练深度学习模型。
- MONAI:一个专门为医学影像分析设计的深度学习框架,提供了丰富的工具和模型。
通过结合这些生态项目,研究人员可以更高效地开发和部署肾脏和肾脏肿瘤分割算法。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248