QMF:高效隐式反馈矩阵分解库
2024-09-19 10:35:48作者:明树来
项目介绍
QMF(Quora Matrix Factorization)是一个快速且可扩展的C++库,专门用于隐式反馈矩阵分解模型。该库支持两种主要的算法:加权交替最小二乘法(Weighted ALS)和贝叶斯个性化排序(BPR)。QMF通过高效的并行化技术,能够在多处理器环境下实现近线性的加速效果,特别适用于大规模数据集的处理。
项目技术分析
核心算法
-
加权交替最小二乘法(Weighted ALS):
- 该算法优化加权平方损失,允许为每个正样本指定不同的权重。
- 基于用户和物品因子矩阵的交替最小化,QMF通过并行化技术加速这一过程。
-
贝叶斯个性化排序(BPR):
- 该算法通过随机梯度下降(SGD)优化每个用户的平均AUC。
- 支持异步并行的Hogwild!更新,能够在稀疏数据集上实现近线性的加速。
技术栈
- 编程语言:C++14
- 依赖库:glog、gflags、lapack
- 构建工具:CMake
- 并行化技术:Hogwild!
项目及技术应用场景
QMF适用于需要处理大规模隐式反馈数据的场景,如推荐系统、个性化排序、用户行为分析等。具体应用包括:
- 推荐系统:通过矩阵分解技术,为用户推荐个性化内容。
- 个性化排序:在电商、新闻等领域,根据用户历史行为进行个性化排序。
- 用户行为分析:分析用户在平台上的行为,优化用户体验。
项目特点
-
高效并行化:
- 支持多线程并行计算,能够在多处理器环境下实现近线性的加速效果。
- 采用Hogwild!技术,实现异步并行更新,提高计算效率。
-
灵活的算法选择:
- 支持两种主流的矩阵分解算法:Weighted ALS和BPR,满足不同应用场景的需求。
-
丰富的评估指标:
- 支持多种基于排序的评估指标,如AUC、平均精度、Precision@k、Recall@k等。
- 能够在训练和测试过程中实时计算这些指标,帮助开发者快速评估模型性能。
-
易于使用:
- 提供简洁的命令行接口,方便用户快速上手。
- 支持多种参数配置,用户可以根据具体需求调整模型参数。
-
开源与社区支持:
- 项目遵循Apache 2.0开源协议,用户可以自由使用、修改和分发。
- 由Quora团队开发并维护,拥有活跃的社区支持。
结语
QMF作为一个高效且可扩展的矩阵分解库,为处理大规模隐式反馈数据提供了强大的工具。无论是在推荐系统、个性化排序还是用户行为分析领域,QMF都能帮助开发者快速构建高性能的模型。如果你正在寻找一个高效、灵活且易于使用的矩阵分解库,QMF绝对值得一试!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K