QMF:高效隐式反馈矩阵分解库
2024-09-19 17:00:14作者:明树来
项目介绍
QMF(Quora Matrix Factorization)是一个快速且可扩展的C++库,专门用于隐式反馈矩阵分解模型。该库支持两种主要的算法:加权交替最小二乘法(Weighted ALS)和贝叶斯个性化排序(BPR)。QMF通过高效的并行化技术,能够在多处理器环境下实现近线性的加速效果,特别适用于大规模数据集的处理。
项目技术分析
核心算法
- 
加权交替最小二乘法(Weighted ALS): - 该算法优化加权平方损失,允许为每个正样本指定不同的权重。
- 基于用户和物品因子矩阵的交替最小化,QMF通过并行化技术加速这一过程。
 
- 
贝叶斯个性化排序(BPR): - 该算法通过随机梯度下降(SGD)优化每个用户的平均AUC。
- 支持异步并行的Hogwild!更新,能够在稀疏数据集上实现近线性的加速。
 
技术栈
- 编程语言:C++14
- 依赖库:glog、gflags、lapack
- 构建工具:CMake
- 并行化技术:Hogwild!
项目及技术应用场景
QMF适用于需要处理大规模隐式反馈数据的场景,如推荐系统、个性化排序、用户行为分析等。具体应用包括:
- 推荐系统:通过矩阵分解技术,为用户推荐个性化内容。
- 个性化排序:在电商、新闻等领域,根据用户历史行为进行个性化排序。
- 用户行为分析:分析用户在平台上的行为,优化用户体验。
项目特点
- 
高效并行化: - 支持多线程并行计算,能够在多处理器环境下实现近线性的加速效果。
- 采用Hogwild!技术,实现异步并行更新,提高计算效率。
 
- 
灵活的算法选择: - 支持两种主流的矩阵分解算法:Weighted ALS和BPR,满足不同应用场景的需求。
 
- 
丰富的评估指标: - 支持多种基于排序的评估指标,如AUC、平均精度、Precision@k、Recall@k等。
- 能够在训练和测试过程中实时计算这些指标,帮助开发者快速评估模型性能。
 
- 
易于使用: - 提供简洁的命令行接口,方便用户快速上手。
- 支持多种参数配置,用户可以根据具体需求调整模型参数。
 
- 
开源与社区支持: - 项目遵循Apache 2.0开源协议,用户可以自由使用、修改和分发。
- 由Quora团队开发并维护,拥有活跃的社区支持。
 
结语
QMF作为一个高效且可扩展的矩阵分解库,为处理大规模隐式反馈数据提供了强大的工具。无论是在推荐系统、个性化排序还是用户行为分析领域,QMF都能帮助开发者快速构建高性能的模型。如果你正在寻找一个高效、灵活且易于使用的矩阵分解库,QMF绝对值得一试!
登录后查看全文 
热门项目推荐
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
 docs
docsOpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
263
2.52 K
 kernel
kerneldeepin linux kernel
C
24
6
 flutter_flutter
flutter_flutter暂无简介
Dart
553
124
 ops-math
ops-math本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
596
144
 pytorch
pytorchAscend Extension for PyTorch
Python
94
123
 cangjie_tools
cangjie_tools仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
66
 ohos_react_native
ohos_react_nativeReact Native鸿蒙化仓库
JavaScript
219
301
 RuoYi-Vue3
RuoYi-Vue3🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
601
 cangjie_compiler
cangjie_compiler仓颉编译器源码及 cjdb 调试工具。
C++
117
91
 Cangjie-Examples
Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K