首页
/ 探索集体矩阵分解:一款强大的推荐系统与数据分析工具

探索集体矩阵分解:一款强大的推荐系统与数据分析工具

2024-09-18 20:52:53作者:卓炯娓

项目介绍

集体矩阵分解(Collective Matrix Factorization, CMF) 是一款基于集体矩阵分解算法的高效推荐系统工具。该项目源自 "Relational learning via collective matrix factorization" 的研究,并在此基础上进行了多项增强和改进,特别是在冷启动推荐方面,如 "Cold-start recommendations in Collective Matrix Factorization" 中所述。此外,CMF 还引入了隐式反馈变体,如 "Collaborative filtering for implicit feedback datasets" 中所描述的。

CMF 是一个混合协同过滤模型,能够处理显式评分数据或隐式反馈数据,并结合用户和/或项目的侧信息(side information)。该模型不仅适用于纯协同过滤和纯基于内容的模型,还能处理冷启动推荐问题(即对于训练数据中未出现但有侧信息可用的用户和项目)。

尽管 CMF 最初是为推荐系统设计的,但它也可以应用于其他领域,如主题建模、降维和缺失值插补等。只需将“用户”视为主矩阵的行,“项目”视为列,并使用“显式”模型即可。

项目技术分析

CMF 的核心思想是通过低秩分解来预测用户对项目的评分(或隐式反馈情况下的加权置信度)。具体来说,CMF 通过分解交互矩阵 X(大小为 用户 x 项目)来实现:

X ~ A * B.T

其中 AB 是拟合的模型矩阵。此外,CMF 还通过分解项目侧信息矩阵和/或用户侧信息矩阵来利用侧信息:

U ~ A * C.T,   I ~ B * D.T

通过共享用于分解评分的用户/项目因子矩阵,或仅共享部分潜在因子,CMF 能够为那些有侧信息但无评分的用户和项目生成推荐,尽管这些预测的质量可能不如有评分的用户和项目。

CMF 还支持多种优化方法,包括交替最小二乘法(ALS)和基于梯度的 L-BFGS 优化器。此外,CMF 提供了多种模型变体,如非负约束、L1 正则化、动态调整正则化等。

项目及技术应用场景

CMF 的应用场景非常广泛,主要包括:

  1. 推荐系统:无论是显式评分还是隐式反馈,CMF 都能提供高质量的推荐。特别是在冷启动场景下,CMF 能够利用侧信息生成推荐,这在实际应用中非常有价值。

  2. 主题建模:通过将用户视为行,项目视为列,CMF 可以用于主题建模,生成低维因子矩阵,从而揭示数据中的潜在主题。

  3. 降维:CMF 可以作为一种通用的降维技术,适用于各种类型的数据。

  4. 缺失值插补:CMF 的 Python 版本与 scikit-learn 兼容,并提供了一个专门用于插补的类,适用于 scikit-learn 管道中的缺失值插补。

项目特点

CMF 具有以下显著特点:

  • 多功能性:支持显式反馈和隐式反馈模型,能够处理冷启动推荐问题,并结合用户和/或项目的侧信息。
  • 高效性:采用 C 语言编写,提供 Python 和 R 接口,支持多线程,能够处理大规模数据集。
  • 灵活性:支持多种优化方法和模型变体,如非负约束、L1 正则化、动态调整正则化等。
  • 易用性:提供丰富的 API,支持生成 Top-N 推荐列表和从新数据计算潜在因子。
  • 兼容性:Python 版本与 scikit-learn 兼容,适用于各种数据分析任务。

结语

CMF 是一款功能强大且灵活的工具,适用于各种推荐系统和数据分析任务。无论你是推荐系统开发者,还是数据科学家,CMF 都能为你提供高效、准确的解决方案。立即尝试 CMF,开启你的数据分析与推荐系统之旅吧!

安装指南

  • Python
pip install cmfrec

如安装失败,请参考 此指南 配置 C 编译器。

了解更多

参考文献

相关项目

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
609
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
184
34
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0