探索集体矩阵分解:一款强大的推荐系统与数据分析工具
项目介绍
集体矩阵分解(Collective Matrix Factorization, CMF) 是一款基于集体矩阵分解算法的高效推荐系统工具。该项目源自 "Relational learning via collective matrix factorization" 的研究,并在此基础上进行了多项增强和改进,特别是在冷启动推荐方面,如 "Cold-start recommendations in Collective Matrix Factorization" 中所述。此外,CMF 还引入了隐式反馈变体,如 "Collaborative filtering for implicit feedback datasets" 中所描述的。
CMF 是一个混合协同过滤模型,能够处理显式评分数据或隐式反馈数据,并结合用户和/或项目的侧信息(side information)。该模型不仅适用于纯协同过滤和纯基于内容的模型,还能处理冷启动推荐问题(即对于训练数据中未出现但有侧信息可用的用户和项目)。
尽管 CMF 最初是为推荐系统设计的,但它也可以应用于其他领域,如主题建模、降维和缺失值插补等。只需将“用户”视为主矩阵的行,“项目”视为列,并使用“显式”模型即可。
项目技术分析
CMF 的核心思想是通过低秩分解来预测用户对项目的评分(或隐式反馈情况下的加权置信度)。具体来说,CMF 通过分解交互矩阵 X(大小为 用户 x 项目)来实现:
X ~ A * B.T
其中 A 和 B 是拟合的模型矩阵。此外,CMF 还通过分解项目侧信息矩阵和/或用户侧信息矩阵来利用侧信息:
U ~ A * C.T, I ~ B * D.T
通过共享用于分解评分的用户/项目因子矩阵,或仅共享部分潜在因子,CMF 能够为那些有侧信息但无评分的用户和项目生成推荐,尽管这些预测的质量可能不如有评分的用户和项目。
CMF 还支持多种优化方法,包括交替最小二乘法(ALS)和基于梯度的 L-BFGS 优化器。此外,CMF 提供了多种模型变体,如非负约束、L1 正则化、动态调整正则化等。
项目及技术应用场景
CMF 的应用场景非常广泛,主要包括:
-
推荐系统:无论是显式评分还是隐式反馈,CMF 都能提供高质量的推荐。特别是在冷启动场景下,CMF 能够利用侧信息生成推荐,这在实际应用中非常有价值。
-
主题建模:通过将用户视为行,项目视为列,CMF 可以用于主题建模,生成低维因子矩阵,从而揭示数据中的潜在主题。
-
降维:CMF 可以作为一种通用的降维技术,适用于各种类型的数据。
-
缺失值插补:CMF 的 Python 版本与 scikit-learn 兼容,并提供了一个专门用于插补的类,适用于 scikit-learn 管道中的缺失值插补。
项目特点
CMF 具有以下显著特点:
- 多功能性:支持显式反馈和隐式反馈模型,能够处理冷启动推荐问题,并结合用户和/或项目的侧信息。
- 高效性:采用 C 语言编写,提供 Python 和 R 接口,支持多线程,能够处理大规模数据集。
- 灵活性:支持多种优化方法和模型变体,如非负约束、L1 正则化、动态调整正则化等。
- 易用性:提供丰富的 API,支持生成 Top-N 推荐列表和从新数据计算潜在因子。
- 兼容性:Python 版本与 scikit-learn 兼容,适用于各种数据分析任务。
结语
CMF 是一款功能强大且灵活的工具,适用于各种推荐系统和数据分析任务。无论你是推荐系统开发者,还是数据科学家,CMF 都能为你提供高效、准确的解决方案。立即尝试 CMF,开启你的数据分析与推荐系统之旅吧!
安装指南:
- Python:
pip install cmfrec
如安装失败,请参考 此指南 配置 C 编译器。
了解更多:
- MovieLens 推荐系统示例(Python)
- R vignette(R)
参考文献:
- "Cold-start recommendations in Collective Matrix Factorization"
- "Collaborative filtering for implicit feedback datasets"
相关项目:
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00