DuckDB聚合函数并行化性能分析与优化思路
2025-05-05 12:51:25作者:姚月梅Lane
在数据库系统DuckDB中,聚合函数的执行性能是影响整体查询效率的关键因素之一。本文通过一个典型案例,深入分析DuckDB在处理大规模数据聚合时的性能表现,并探讨可能的优化方向。
问题现象
当用户执行包含窗口函数和聚合操作的复杂查询时,发现DuckDB的聚合阶段未能充分利用多核CPU资源。具体表现为:
- 数据加载阶段能够有效利用所有CPU核心
- 聚合计算阶段仅使用1-2个核心
- 与Pandas相比,某些聚合操作性能差距可达56%
典型查询示例:
CREATE TABLE tbl(val FLOAT);
INSERT INTO tbl SELECT 0.5 + random() FROM generate_series(1000000000) s(i);
WITH tmp AS (
SELECT val / LAG(val) OVER () AS rate
FROM tbl
)
SELECT PRODUCT(rate) FROM tmp;
技术分析
执行计划解析
通过EXPLAIN ANALYZE分析查询计划,可以发现几个关键点:
- 流式窗口操作:DuckDB使用了STREAMING_WINDOW算子计算LAG窗口函数,这种实现方式避免了数据物化,但限制了并行性
- 执行管道限制:窗口函数和聚合操作处于同一执行管道中,导致整个管道只能单线程执行
- 性能瓶颈分布:在1亿行数据测试中,窗口函数计算耗时2.02秒,而聚合操作耗时1.07秒
并行化限制原因
DuckDB当前的架构设计存在以下限制:
- 流式窗口的单线程特性:STREAMING_WINDOW算子设计为单线程执行以保证正确性
- 管道执行模型:同一管道内的操作必须顺序执行,无法实现算子间并行
- 压缩/解压开销:对于随机数据,压缩效率低且消耗大量CPU资源
性能对比测试
通过不同方法的对比测试,发现:
| 方法 | 执行时间(ms) |
|---|---|
| DuckDB直接查询 | 194-245 |
| Pandas实现 | 122-136 |
| 物化后聚合 | 52-54 |
关键发现:
- 将中间结果物化后再聚合可以充分利用多核
- 禁用压缩参数(PRAGMA force_compression='uncompressed')可提升约30%性能
- 对于已加载到内存的数据,聚合速度极快(0.5-0.6秒)
优化建议
基于分析结果,提出以下优化方向:
-
查询重写:对于复杂聚合查询,可考虑将中间结果物化为临时表
CREATE TEMP TABLE tmp AS SELECT val / LAG(val) OVER () AS rate FROM tbl; SELECT PRODUCT(rate) FROM tmp; -
参数调整:对于随机数据等压缩率低的情况,可禁用压缩
PRAGMA force_compression='uncompressed'; -
架构改进:未来版本可考虑:
- 实现窗口函数的并行化计算
- 优化执行管道模型,支持更灵活的并行策略
- 改进压缩算法对随机数据的处理效率
深入思考
从系统设计角度看,这一案例反映了数据库系统中常见的"并行度墙"问题——查询计划中只要有一个算子不能并行化,就会限制整个查询的并行度。DuckDB当前采用保守但正确的流式窗口实现,确保了结果的准确性但牺牲了部分性能。
对于数据分析师和开发者,理解这种性能特性有助于:
- 合理设计查询结构,避免长管道操作
- 在ETL流程中合理使用物化策略
- 根据数据特性选择适当的压缩参数
随着DuckDB的持续发展,预期未来版本会在保持正确性的基础上,逐步优化这类复杂场景的并行计算能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1