Sentence-Transformers 处理长文本的技术方案解析
2025-05-13 19:52:17作者:冯梦姬Eddie
在自然语言处理任务中,处理长文本一直是一个具有挑战性的问题,尤其是当使用预训练语言模型(如BERT等)时,这些模型通常有严格的输入长度限制(例如512个token)。本文将探讨如何在Sentence-Transformers项目中高效处理超长文本(如4000个token),并分析几种可行的技术方案。
长文本处理的常见挑战
Sentence-Transformers 是一个基于Transformer架构的库,主要用于生成句子的嵌入表示(embeddings)。然而,许多预训练模型(如BERT)的最大输入长度限制为512个token,这给处理长文档带来了困难。直接截断文本会导致信息丢失,而简单地扩展模型的最大长度又可能带来计算资源的急剧增加。
分块编码技术
一种常见的解决方案是将长文本分割成较小的块(chunks),然后分别编码这些块,最后将编码结果聚合起来。以下是分块编码的具体实现步骤:
-
文本分割与预处理
- 首先,确定一个合适的块大小(例如500个token),确保其不超过模型的最大长度限制(512个token减去特殊token的位置)。
- 使用tokenizer对文本进行分词,但不进行截断(
truncation=False)。 - 将分词后的
input_ids分割成多个子序列,每个子序列的长度不超过设定的块大小。 - 在每个子序列的开头和结尾分别添加
[CLS]和[SEP]标记,以符合模型的输入格式要求。
-
编码与聚合
- 对每个子序列分别进行编码,生成对应的嵌入表示。
- 对编码结果进行聚合,常见的聚合方法包括:
- 均值池化(Mean Pooling):对每个子序列的嵌入表示取平均,生成最终的文档表示。
- 拼接(Concatenation):将所有子序列的嵌入表示拼接成一个长向量,但需要注意维度爆炸的问题。
- 层次池化(Hierarchical Pooling):先对每个子序列进行池化,再对池化后的结果进行二次池化。
其他可行的技术方案
除了分块编码,还可以考虑以下几种方法:
-
文本摘要(Summarization)
- 在编码之前,使用文本摘要技术(如T5、BART等)将长文本压缩为较短的摘要,使其能够适应模型的输入长度限制。
-
动态长度扩展(Dynamic Length Extension)
- 某些技术(如BERT-AL)通过动态调整模型的注意力机制,使其能够处理更长的输入序列。这种方法需要对模型架构进行修改,但可以避免分块带来的信息割裂问题。
-
直接截断(Truncation)
- 如果文本的开头或结尾部分包含关键信息,可以直接截取前512个token或后512个token。虽然简单,但可能会丢失重要内容。
总结
处理长文本时,分块编码是一种灵活且实用的方法,尤其适合在资源受限的情况下使用。然而,选择哪种方案取决于具体的应用场景和性能需求。对于需要高精度的任务,可以尝试结合摘要和分块编码;而对于需要快速响应的场景,直接截断可能是更简单的选择。
Sentence-Transformers 作为一个强大的句子嵌入工具,通过合理的技术方案,可以有效地扩展其处理长文本的能力,从而在更广泛的应用场景中发挥作用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355