首页
/ NFNet PyTorch 实现:高性能图像识别的利器

NFNet PyTorch 实现:高性能图像识别的利器

2024-09-20 05:22:43作者:田桥桑Industrious

项目介绍

NFNet PyTorch 实现 是一个基于 PyTorch 的开源项目,旨在提供高性能的大规模图像识别模型。该项目实现了 NFNet 系列模型(F0-F6),这些模型在 ImageNet 数据集上表现出色,不仅在准确性上媲美甚至超越了 EfficientNet-B7,而且在训练速度上快了 8.7 倍。NFNet 模型通过去除归一化层,实现了更高的训练效率和更好的泛化能力。

项目技术分析

NFNet 模型的核心技术在于其去除了传统的归一化层(如 Batch Normalization),转而采用了一种称为“Scaled Weight Standardization”的技术。这种技术通过对卷积层的权重进行标准化,使得模型在训练过程中更加稳定,同时保持了较高的准确性。此外,NFNet 还结合了“Adaptive Gradient Clipping”(自适应梯度裁剪)技术,进一步提升了训练的稳定性和效率。

项目及技术应用场景

NFNet 模型适用于各种需要高性能图像识别的场景,包括但不限于:

  • 计算机视觉任务:如图像分类、目标检测、语义分割等。
  • 深度学习研究:研究人员可以利用 NFNet 模型进行实验,探索新的训练方法和技术。
  • 工业应用:在需要快速训练和部署大规模图像识别模型的场景中,NFNet 可以显著提升效率。

项目特点

  1. 高性能:NFNet 模型在 ImageNet 上的 Top-1 准确率达到了新的 SOTA(State-of-the-Art)水平,尤其是在大模型上表现尤为突出。
  2. 快速训练:相比传统的模型,NFNet 在训练速度上提升了 8.7 倍,极大地缩短了训练时间。
  3. 易于集成:项目提供了详细的文档和示例代码,用户可以轻松地将 NFNet 模型集成到自己的项目中。
  4. 开源社区支持:项目鼓励社区贡献,用户可以通过提交 Issue、Pull Request 等方式参与到项目的开发和改进中。

快速开始

你可以通过以下步骤快速开始使用 NFNet 模型:

git clone https://github.com/benjs/nfnets_pytorch.git
pip3 install -r requirements.txt

或者,如果你不需要评估和训练脚本,可以直接安装:

pip install git+https://github.com/benjs/nfnets_pytorch

下载预训练权重后,你可以通过以下代码加载模型:

from nfnets import pretrained_nfnet
model_F0 = pretrained_nfnet('pretrained/F0_haiku.npz')
model_F1 = pretrained_nfnet('pretrained/F1_haiku.npz')

验证模型

你可以通过以下命令验证模型的准确性:

python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset path/to/imagenet/valset/

自定义模型

如果你想在自己的模型中使用 NFNet 的技术,只需将 nn.Conv2d 替换为 WSConv2D,并将 nn.ReLU 替换为 VPReLUVPGELU

import torch.nn as nn
from nfnets import WSConv2D, VPReLU, VPGELU

class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        self.activation = VPReLU(inplace=True) # or VPGELU
        self.conv0 = WSConv2D(in_channels=128, out_channels=256, kernel_size=1, ...)
        # ...

    def forward(self, x):
      out = self.activation(self.conv0(x))
      # ...

贡献

项目目前仍处于早期阶段,欢迎社区成员通过提交 Issue、Pull Request 等方式参与到项目的开发中。你可以在 项目看板 中查看当前的开发状态。

NFNet PyTorch 实现不仅为研究人员提供了一个强大的工具,也为工业应用带来了显著的效率提升。无论你是深度学习爱好者还是专业开发者,NFNet 都值得你一试。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
715
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1