Lichess移动端棋盘坐标训练器的触摸事件处理优化
在Lichess移动端应用(lichess-org/mobile)的坐标训练功能中,开发者发现了一个关于触摸事件处理的交互问题。这个问题涉及到用户在棋盘上滑动手指时,系统会持续触发坐标选择事件,而实际上应该只在单次点击时响应。
问题背景
坐标训练是国际象棋学习中的一个重要功能,它帮助棋手快速识别棋盘上的坐标位置。在移动设备上,这个功能通常通过触摸屏幕上的棋盘格子来实现。然而,当前实现中存在一个不太符合用户预期的行为:当用户在棋盘上滑动手指时,系统会持续触发坐标选择事件,而不是只在初始点击时响应一次。
技术分析
这个问题源于底层棋盘编辑器组件(chessground)的事件处理机制。在当前的实现中:
- 坐标训练屏幕(CoordinateTrainingScreen)通过onGuess方法处理用户的选择
- 这个方法被传递给棋盘编辑器(BoardEditor)的onEditedSquare回调
- 棋盘编辑器组件在_ontouchedEvent处理中,对触摸和拖动事件都调用了相同的回调
这种设计原本是为了支持棋盘编辑功能——比如当用户需要快速删除多个棋子时,滑动手指可以连续触发删除操作。然而,这种机制并不适合坐标训练场景。
解决方案探讨
开发团队提出了两种可能的解决方案:
-
扩展编辑器指针模式:在EditorPointerMode枚举中添加新的模式,专门用于坐标训练场景。这种方案保持了组件的灵活性,同时为不同使用场景提供专门的行为。
-
使用专门的点击回调:为Chessboard组件添加onTappedSquare回调,完全绕过BoardEditor组件的事件处理机制。这种方法更直接,但可能意味着需要重构部分代码结构。
实现考量
在决定最终解决方案时,需要考虑以下因素:
- 组件复用性:保持棋盘组件在不同场景下的通用性
- 用户体验一致性:确保交互行为符合用户预期
- 代码维护性:选择易于理解和维护的实现方式
经过讨论,团队倾向于第一种方案,因为它既解决了当前问题,又保持了组件的灵活性,为未来可能的其他交互模式预留了扩展空间。
总结
这个案例展示了在移动应用开发中,通用组件设计与特定场景需求之间的平衡艺术。通过分析用户交互的预期行为,并灵活调整底层实现,开发团队能够提供更加符合直觉的用户体验。这也提醒我们,在组件设计时考虑不同使用场景的重要性,以及如何通过合理的架构设计来支持这种灵活性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









