Lichess移动端棋盘坐标训练器的触摸事件处理优化
在Lichess移动端应用(lichess-org/mobile)的坐标训练功能中,开发者发现了一个关于触摸事件处理的交互问题。这个问题涉及到用户在棋盘上滑动手指时,系统会持续触发坐标选择事件,而实际上应该只在单次点击时响应。
问题背景
坐标训练是国际象棋学习中的一个重要功能,它帮助棋手快速识别棋盘上的坐标位置。在移动设备上,这个功能通常通过触摸屏幕上的棋盘格子来实现。然而,当前实现中存在一个不太符合用户预期的行为:当用户在棋盘上滑动手指时,系统会持续触发坐标选择事件,而不是只在初始点击时响应一次。
技术分析
这个问题源于底层棋盘编辑器组件(chessground)的事件处理机制。在当前的实现中:
- 坐标训练屏幕(CoordinateTrainingScreen)通过onGuess方法处理用户的选择
- 这个方法被传递给棋盘编辑器(BoardEditor)的onEditedSquare回调
- 棋盘编辑器组件在_ontouchedEvent处理中,对触摸和拖动事件都调用了相同的回调
这种设计原本是为了支持棋盘编辑功能——比如当用户需要快速删除多个棋子时,滑动手指可以连续触发删除操作。然而,这种机制并不适合坐标训练场景。
解决方案探讨
开发团队提出了两种可能的解决方案:
-
扩展编辑器指针模式:在EditorPointerMode枚举中添加新的模式,专门用于坐标训练场景。这种方案保持了组件的灵活性,同时为不同使用场景提供专门的行为。
-
使用专门的点击回调:为Chessboard组件添加onTappedSquare回调,完全绕过BoardEditor组件的事件处理机制。这种方法更直接,但可能意味着需要重构部分代码结构。
实现考量
在决定最终解决方案时,需要考虑以下因素:
- 组件复用性:保持棋盘组件在不同场景下的通用性
- 用户体验一致性:确保交互行为符合用户预期
- 代码维护性:选择易于理解和维护的实现方式
经过讨论,团队倾向于第一种方案,因为它既解决了当前问题,又保持了组件的灵活性,为未来可能的其他交互模式预留了扩展空间。
总结
这个案例展示了在移动应用开发中,通用组件设计与特定场景需求之间的平衡艺术。通过分析用户交互的预期行为,并灵活调整底层实现,开发团队能够提供更加符合直觉的用户体验。这也提醒我们,在组件设计时考虑不同使用场景的重要性,以及如何通过合理的架构设计来支持这种灵活性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00